Through the Oak Ridge Institute for Science and Education (ORISE), Savannah River National Laboratory has two job openings for recent PhD graduates interested in materials science and nanotechnology. Brief position descriptions are below:

SRNL Materials Science and Technology – Postdoctoral Researcher Job
The Materials Science and Technology Division is looking for a postdoctoral researcher to assist with developing numerical models to understand material behavior in a variety of physical and chemical states.

- Full-time, one year position (with possibility of extension depending on performance and funding)
- Must have a recent PhD degree (earned in the last 5 years) in materials science, chemistry, physics, or related field
- Must have expertise in numerical modeling of physical, chemical or thermal processes, excellent written and verbal communication skills, and have a record of publications in a related field
- Will be involved with developing numerical models to understand material performance for various applications including fuel cells, super capacitors, nanomaterial interactions, fracture mechanics, and hydrogen embrittlement

SRNL Materials and Nanotechnology – Postdoctoral Researcher Job
The Materials Science and Technology Division is looking for a postdoctoral researcher to assist with evaluating the effectiveness of new materials for fundamental and applied nuclear energy research projects.

- Full-time, one year position (with possibility of extension depending on performance and funding)
- Must have a recent PhD degree (earned in the last 5 years) in materials science, chemistry, physics, or a related area
- Must have expertise using analytical techniques such as SEM/TEM, UV-Vis spectroscopy, TGA/DSC, AFM, and XPS, excellent written and verbal communication skills, and have a record of publications in related fields
- Will be involved with supporting materials research for nanomaterial-loaded polymers, directed electrical assembly of nanoscale systems, and engineering/characterization of controlled lattice defects in graphene for gas separation