House party? Reimagining intergenerational party transmission

Daniel A. Smith & Yuguo Wang*

October 31, 2025

Abstract

When it comes to intergenerational transmission of political party preference, scholars have consistently found that parents, and even grandparents, can influence the party preferences of their children. Offering a new approach that considers households as loose systems of social organization based on real or putative family ties, we leverage an original dataset of over 683,000 households in Florida with at least one 18-20 year-old and at least one 35-60 year-old registered to vote. Drawing on this household-level dataset, we model the likelihood of the youngest (18-20) adult in the household registering as a Democrat, Republican, or No Party Affiliate (NPA) immediately prior to the 2014 General Election. In estimating the registration of these young individuals, we account not only for their race/ethnicity, gender, and naturalized citizenship status, but more importantly, the party registration, gender, and naturalized citizenship status of the older adults residing in the residence at that time. By aggregating to the household level, our study provides new insights into whether young adults are influenced by the party registration of parent-aged, elders, or sibling-aged household members. We find divergent patterns of intergenerational party transmission in households, with the likelihood of the youngest member of the household registering as a Democrat, Republican, or NPA influenced by the party, gender, and naturalization status of a household's composition, above and beyond the young registrant's own traits.

Key words: intergenerational party transmission, youth party affiliation, partisan influence, households, Florida.

Prepared for State of the Parties: 2024 and Beyond, Ray C. Bliss Institute of Applied Politics, University of Akron, November 6-7, 2025.

^{*}Department of Political Science, University of Florida. UF undergraduates, Lara Adams, Joselie Charles, Samantha Cuenot and Olivia Zhang, contributed to an earlier version of the manuscript. We thank Gina Sapiro for her helpful suggestions, as well as Mike McDonald and members of the UF Election Lab for their feedback on this project.

Introduction

Scholars have long understood the family to be a key site of political learning. Political identities are often forged in households through daily interactions, leading to strong partisan continuity across generations (Jennings and Niemi 1968, 1981; Verba, Schlozman and Burns 2005). Notwithstanding the role of external influences, such as social media and education (Prior 2013), intergenerational transmission continues to mold younger individuals' partisan identities in multigenerational settings. Party affiliation adopted by younger members of the household unit during this formative period is likely to persist well into adulthood (Green, Palmquist and Schickler 2002; Mason and Wronski 2018).

In this paper we leverage data from the statewide Florida voter file to provide a fresh take on party transmission within households. In contrast to most studies of household party transmission in the American context that are grounded in survey data, we take inspiration from comparative studies, particularly in the European context, where scholars have leveraged administrative data to probe the intergenerational party transmission. We draw on official administrative party registration data to better understand the dynamics of party transmission within households. Our aim is to add to the scholarly literature by examining party transmission by considering heterogeneous effects on party transmission by accounting for differences in household age, gender, racial/ethnic, and naturalized citizens groupings.

Our study is grounded in Florida. Leveraging individual-level voter registration data and aggregating it to the household level, we identify nearly 650,000 households in the state—roughly one-in-ten of all the households in the state¹—that had at least one 18-20 year-old and at least on 35-60 year-old who was registered to vote at the time of the 2014 General Election. Many of these households, of course, had more than one individual old enough to be the parent of the youngest member of the household who was registered to vote (although we have no way of confirming a familial relationship), as well as other parent-aged adults, grandparent-aged older adults, and even

¹ In 2014, at the time of our study, according to the U.S. Census American Community Survey, there were an estimated 7.2 million households in Florida. See "Estimated Households (Census ACS)," FLHealthCharts, available https://www.flhealthcharts.gov/ (last accessed April 15, 2025).

sibling-aged registered voters, and we draw insights from these extended households.

To be clear, our study is agnostic as to whether individuals of same or different generations residing in a household have a blood or a legal relationship that formally makes them related to the youngest registered voter in the household. Rather, we take household as having the potential of transmitting certain values and beliefs both across and within generations, regardless of a blood or legal relationship. As such, we do not test whether party loyalty literally "runs in the family," transmitted lineally from generation to generation. Instead, we investigate whether the composition of other registered voters residing in the same household are concordant with the party registration of the youngest member of the household.

Our findings suggest that, holding constant the individual-level traits of the youngest member of the household, party transmission within households occurs both vertically from older generation(s) and horizontally among sibling-aged household members. Considering party transmission in households rather than from a single parent or in two-parent families is important in the American context, given that the rate of children under the age of 18 living in non-traditional two-parent households is among the highest in the world and continues to rise.² By focusing on the household as an institution that can catalyze the transmission of party identification across co-inhabitant bonds—and not being constrained by a strict definition of a nuclear family—our aim is to explore new possibilities for understanding how the partisan identity of young voters is forged (Sapiro 2004).

Kinship and intergenerational party transmission

It has been long understood that political socialization within families is "not simply a two-generation phenomenon" (Gidengil et al. 2021, p. 1137). In recent years, the literature on intergenerational transmission has broadened beyond the scope of parent-child relationships to

² "U.S. has world's highest rate of children living in single-parent households," Pew Research Center, December 12, 2019, available https://www.pewresearch.org/short-reads/2019/12/12/u-s-children-more-likely-than-children-in-other-countries-to-live-with-just-one-parent/ (last accessed April 10, 2025).

include other influences, namely grandparents, but also siblings. This research suggests that the role older (and younger) generations play in socialization may be underestimated. Just as socioeconomic factors and social mobility are passed down through generations (Chan and Boliver 2013; Gidengil et al. 2021), so too are other elements, such as political viewpoints (Gidengil, Wass and Valaste 2016). This effect may be even more relevant in the context of multigenerational households. Some scholars have found that growing up in such an environment may be linked to higher cognitive function compared to two-generational households Lee et al. (2021). The increased interaction between younger and older generations may stimulate a socially rich environment—one that that may also impact political socialization.

Many households in the U.S. are comprised of broader familial, as well as non-familial relations, what we refer to here as kinship networks. The American family unit is highly symbolic; Americans encode a considerable amount of meaning everyday in households regardless of whether there are blood or legal ties Schneider (2014). As such, non-blood relations within households may play a key role in engendering partisan concordance. Both formal and informal familial networks may shape a young individuals' social identity and how they relate to the political world around them, fostering an innate trust and favor towards those they perceive as relatives, beyond blood or marriage. Some studies of American kinship have found that individuals of the less societal-constrained sex will bond with their adult same-sex kin as they face more extra-familial interaction that drives them towards familiar bonds (Rodseth and Wrangham 2004). These bonds may form the basis of political association that, though weakened over time, may provide some explanation for homogeneity of party affiliations across the same familial groups. Of course, not all families, however loosely defined, emphasize politics as a constituent part of their core identity; households that treat partisan politics as central to their identity may be more likely to have stronger cross-generational continuity, whereas those that understand politics as more peripheral may experience weaker partisan transmission effects.

Parent-aged party transmission

In the American context, intergenerational party transmission studies consistently find that parents play a crucial role in transmitting political identities to their children. In her review of the literature, Sapiro (2004) emphasizes that children develop independent political views based on education, peer influence, and personal experiences. Earlier studies, such as the work by Jennings, Stoker and Bowers (2009), found that political divergence between parents and children is more common in households where parents express weak partisan attachments or conflicting political messages (Jennings and Niemi 1968, 1981; Verba, Schlozman and Burns 2005). In these classic studies, which built on the foundational work of *American Voter* (Campbell et al. 1960), the traditional family serves as a primary agent of political socialization, with partisan affiliation often developing early in life and remaining relatively stable over time. Parent-child concordance in political party affiliation has been well-documented, with factors such as communication patterns, political interest, and parental consistency influencing the strength of transmission (Dalton 1980).

To be sure, there are cracks in this dominant American-centric paradigm. In a prescient but largely ignored study, Merelman (1970) noted that the rising divorce rate in the United States would likely begin to fray the otherwise stable transmission of partisan identification within families. "The closer and more cohesive the family, the more likely it seems that successful transmission will occur," Merelman (1970, p. 134-35) writes, "but the divorce rate in the United States has risen steadily in recent years," driving "emotional wedges between parent and child" and which often "removes the father, the chief source of many political identifications, from the house and from his children."

More recently, challenging the direct transmission model, Ojeda and Hatemi (2015) complicate the dominant understanding that party identification is unidirectional, that parent-child concordance equals transmission flowing from a dominant parent to a passive child. Their two-step model complicates the single pathway understanding of party transmission, as they allow for children to have agency—that they first must perceive their parents' partisanship and then must choose to (or not to) adopt it for themselves. Drawing on survey data from the 1988

Health and Lifestyles Study and the 2006 and 1008 National Longitudinal Studies of Youth that gathered self-reported and cross-reported political party identifications across families, Ojeda and Hatemi (2015) find that the younger cohort differentially learns about their parents' partisanship. This learning is crucial because it is the child's *perception* of their parents' political values and attitudes that matters more for value transmission than the parent's actual political identification. The process of children assuming the same political party identification is, of course, catalyzed by parents discussing politics with their children or offering them a greater degree of social support.

Another study by Akee et al. (2018) using a difference-in-differences (DiD) design, examines the relationship between socio-economic status and political participation, drawing on administrative data on voter records and survey data. They utilize the Great Smoky Mountain Study (GSMS), a longitudinal study that documents the baseline characteristics of parents and children conducted from 1992 to 2015. By linking the parents and children in the GSMS to public use voter files, they found a strong positive correlation between voter turnout for parents and their children in both presidential and midterm elections. Regarding families' socioeconomic status, Akee et al. (2018) find that family circumstances during childhood impact political participation: "income differences are transmitted across generations and likely contribute to the intergenerational transmission of social and political inequality."

Several studies on partisan transmission in the European context have leveraged administrative data. Comparatively, drawing on a large survey of children and parents in the Flemish region of Belgium, Hooghe and Boonen (2015) find high correspondence in the voting intentions within families, particularly when transmitted by fathers. Using household panel set data from democratic countries with varying degrees of competition, namely Germany, Great Britain, and Switzerland, (Fitzgerald and Curtis 2012) study the effect of parental heterogeneity on children's political interest within varying political systems. For Switzerland and Germany, children with divergent parents had a two to three percent increase in political interest compared to those whose parents held concordant beliefs. More specifically, countries and districts dominated by less competitive systems, specifically proportional representation (PR), had a

stronger positive correlation between parental divergence and transmission of increased political engagement. Further examination of German household panel data, Fitzgerald and Bacovsky (2024) reveal that mothers often dominate political transmission in youth, yet influence wanes in adolescence. Mothers, they find, are also more likely to successfully transmit center-left views than fathers. Other studies of British and German data, including work by Zuckerman, Dasovic and Fitzgerald (2007), mirror findings from studies relying on data from the U.S., particularly the idea that increased political discussion strengthens political transmission and that there is often bi-directionality of political transmission from children back to parents.

Elder party transmission

Fewer studies—either based in the U.S. or in other contexts, have assessed the influence of partisan transmission on younger generations by grandparents or other older members of a household. Among the scholars who have examined these multigenerational families, however, a few have found that children who grow up in such households tend to exhibit stronger partisan alignment with their parents and grandparents compared to those in nuclear families. In their study drawing on official administrative data in Finland, (Gidengil et al. 2021) find that grandparents often transmit their cultural and political values to their grandchildren, either through the parents or directly. This phenomenon is evidenced by the increased likelihood of the grandchildren of non-voters being non-voters as well. That grandparents have increasingly been recognized as influential figures in shaping political identity, especially in multigenerational households, is not surprising. When children live with and are frequently exposed to politically engaged grandparents, such a multigenerational living situation may help to compensate for weaker parental transmission, particularly if parents exhibit low political engagement.

Intergenerational party transmission stemming elders in a household may be especially impacted by the immigration and naturalization experiences of household members. As Borkowska and Luthra (2024) argue in their study of political socialization in immigrant families in the United Kingdom, in contrast to vertical parent-child political socialization models, the

transmission of political identity varies by the experienced immigration process. With a focus on immigrant families in the U.S., Wong and Tseng (2008) also find that multigenerational immigrant households play a vital role in fostering political identity and engagement, with the political socialization process among immigrant families sometimes even transferring bi-directionally.

Sibling-aged party transmission

A similar political socialization process might be said about siblings. Although research on party transmission between siblings is more limited, a growing literature indicates that older siblings are significant agents in socialization. Sibling relationships are often the most long-lasting when compared to other familial and extra-familial relationships (Milevsky 2016). Given their smaller age gap and their frequent interactions in the household, the influence siblings have on party transmission is not an anomaly. Studies show that siblings provide influences similar to those of other family members and peers; as members of the same household, they often experience the same conditions and commonly share social circles (Urbatsch 2011). In particular, regarding the youngest sibling, older siblings have been found to impact various characteristics such as behavior, interests, and educational aspirations Milevsky (2016), but also delinquency (Slomkowski et al. 2001)). Older siblings effectively serve as another point of reference for younger members of the household. Age, as well as a higher status within the family, suggests that older siblings are salient models for younger siblings, which also accounts for similarities between adolescent siblings (Whiteman, McHale and Crouter 2007).

There is some additional research suggesting that children residing in households may receive stronger or more consistent partisan cues, leading to higher rates of partisan agreement across generations. Eckstein, Šerek and Noack (2018) conducted a longitudinal study in Germany to examine whether siblings affect each other's intergroup attitudes over time, utilizing a previous sample from a study on social-political tolerance. Their findings indicate that the intergroup attitudes of older siblings predicted those of younger siblings. However, the degree to which

certain attitudes could be predicted was influenced by gender, as older siblings' intolerance and social dominance orientation appeared to only affect younger sisters without having a significant impact on younger brothers.

Research design: Household party transmission

What explains party registration in different types of households, and how much does household kinship affect the decision of young individuals to register with a political party as opposed to remaining an unaffiliated voter?³ In contrast to much of the scholarship on U.S. party transmission that draws on survey data, our study borrows from the European line of inquiry into party transmission within families (Zuckerman, Dasovic and Fitzgerald 2007). We leverage official administrative data from Florida to address questions of intergenerational household party transmission. Specifically, we draw official administrative data detailing roughly 12 million registered voters in Florida who are publicly identified in Florida's statewide voter file.

Our focus on households—not families, *per se*—is for good reason: we do not know the parentage of the youngest registered voter in a household, only that they resided there when they registered to vote. But there are certainly tradeoffs when relying on administrative data. Although they are official governmental records, the Florida voter file has limited variables. On the other hand, there is no social desirability bias or satisficing with administrative data, as opposed to surveys that ask young individuals to identify their political party, much less that of their parents, grandparents, siblings, or other members of their household. It is certainly possible that survey respondents do not know the party of their parents, which could lead to acquiescence bias, with respondents reporting that their family relations have the same party affiliation as their own.

Following other scholars who have drawn on election administration data in Florida (Herron and Smith 2013, 2014, 2016; Amos, Smith and Ste Claire 2017; Baringer, Herron and Smith 2020; Shino and Smith 2018), we utilize the official party and demographic information of a large

³ Unfortunately, since we are drawing from Florida' official voter file, we are unable to make any pronouncements on younger individuals who are not registered to vote.

population of young voters and their household members who are also registered to vote. Because we draw on hundreds of thousands of registered voter records in Florida, we are able to take advantage of the diversity of the registered voters in a household, which is a limitation of other studies, be they surveys in the U.S. context or studies relying on administrative data in more homogeneous European countries with different party systems. Aggregating individual voters into their registration households and calculating the demographics (including party registration) of the older individuals in the household, we are able to examine party transmission within multigenerational households, where not only older individuals (parent-aged and elders) and but also sibling-aged individuals co-reside. These household arrangements, we suggest, can reinforce partisan identity through repeated exposure to political discussions and collective experiences. It is important to note that we take party registration to be an expression of party identification (see Hood III et al. (2025) for a discussion of this relationship).

Our research design necessarily takes a broad understanding of kinship within a household. Using official election administration data, we are able to identify the youngest voter aged 18-20 residing in a household with at least one individual aged 35 to 60 registered to vote as of the November 4, 2014, General Election. We define a household as all registered voters with the same residential address in the voter file, which allows us to add to the data elder (61+) and sibling-aged individuals (18-20) who are registered to vote and reside at the same location. We exclude from our analysis young individuals (18-20) who moved out of a household and re-registered at another address. We exclude households with more than 10 registered voters, as these addresses may not be distinguished from apartment complexes or other institutional dwellings.

Initially, we identified over 6.5 million households with unique addresses in the 2014 statewide voter file and that had at least two registered voters at that address. We then limited this universe of Florida households to those with at least one 18-20 year old and and at least one 35-60 year-old registered to vote in 2014. After excluding households with more than 10 individuals and those with no 18-20 year-olds or no 35-60 year-olds, we observe 224,271 unique households with 648,967 registered voters, including 236,257 who are 18-20 year-old (which includes other

registered voters besides the youngest 18-20 year-old), 369,067 who are 35-60 years-old, and 43,643 who are 61-100 years old.⁴

In Table 1, we offer the demographics of the 224,271 households in Florida meeting our criteria. The age distribution reveals that in our household sample, which stipulates that there is at least one young voter and one parental-aged voter, a little more than one-third (36.4%) are young voters aged 18-20, and 56.9% are aged 35-60, representing the parent-aged group within households.⁵ Additionally, 6.7% of voters in our households are older, aged 61-100 years, indicating the presence of multigenerational households in our sample. As can be seen, Democrats make up the largest share of registered voters of all ages in the 2014 households (36.1%), followed by Republicans (34.6%), and then those registered as No Party Affiliation (NPA, 29.3%).⁶ In terms of racial and ethnic composition of the Florida households, White voters constitute the largest racial group (56.9%), followed by Black voters (17.7%), Hispanic voters (17.8%), and voters identified as belonging to other racial or ethnic groups (7.5%). Finally, 8.8% of the sample voters in the households are born outside of the U.S. and thus presumed to be naturalized citizens,⁷ which allows us to examine the potential effects of immigration and naturalization status within households on party transmission patterns. For comparisons of the 2014 statewide voter file with our household sample, see Table A1 in the Appendix.

⁴ Due to lack of theoretical expectations in the literature, we exclude from our analysis those who are registered to vote in the household who are 21 to 34 years old, but we could easily analyze this population, too.

⁵ In the case of households with twins, we randomly select one as the youngest.

⁶ Only 1.4% are affiliated with minor parties, and as such, in the logit models that follow we consolidate these voters registered with minor parties with those registered as NPAs.

⁷ We have birthplace data registered voters may voluntarily offer when registering to vote, which allows us to determine foreign-born. The 8.8% naturalized is a conservative estimate, as the 57,071 (8.8%) of registered voters who we successfully identify as being foreign-born is calculated with a denominator that comprises all the other registered voters, not just those for whom we have data on where they were born.

Table 1: Summary of Florida Households

Demographic	Count	Percent
Age		
18-20	236,257	36.4%
35-60	369,067	56.9%
61-100	43,643	6.7%
Party		
DEM	234,515	36.1%
NPA	189,896	29.3%
REP	224,556	34.6%
Race & Ethnic	city	
Black	114,672	17.7%
Hispanic	115,793	17.8%
Other	48,926	7.5%
White	369,576	56.9%
Gender		
Female	342,141	52.7%
Male	285,785	44.0%
Unknown	21,041	3.2%
Naturalized		
Yes	57,071	8.8%
	27,071	0.070

Note: Count and percentage of households with at least one registered voter 18-20 years old residing with at least one other registered voter 35-60 years old. Percent within Age, Party, Race and Ethnicity, and Naturalized categories sum to 100 percent.

Our analysis of intergenerational party transmission draws on Florida's official voter file at the time of the 2014 General Election.⁸ We began our data cleaning exercise by refining the dataset, removing any entries with missing or invalid birth dates (including those who requested public records exemptions) to ensure only complete and publicly accessible records remained. Next, we consolidated multiple entries associated with the same voter ID, retaining only the earliest unique record to avoid duplications. Working with this cleaned dataset, we standardized residence addresses by concatenating the street name, city, and ZIP code into a single lowercase string without punctuation or whitespace. This process created a uniform household identifier and allowed us to cluster all co-residents sharing the same standardized address as members of a single household. Finally, we excluded addresses with more than 10 individuals to avoid conflicting large institutional dwellings (e.g., dormitories or retirement homes) with ordinary

⁸ We utilize 2014 because we plan in the next iteration of this paper to look longitudinally at party transmission changes over time, specifically, to determine whether are findings are consistent in 2024.

single-family households.

After standardizing household addresses, we linked individuals within each household and calculated their ages as of the general election in 2014. Because our primary focus is on newly eligible voters (aged 18-20), we limited our analysis to households with at least one individual aged 18-20 and at least one individual aged 35-60, effectively excluding those aged 21-34 to maintain clearer generational boundaries. Within these eligible households, we identified the youngest member by ranking household residents from lowest to highest age. This approach treats co-residents loosely as kin, recognizing that administrative records do not confirm blood or legal ties. The advantage of this broader understanding of households as kinship groups is that it captures not only traditional parent-child, grandparent-grandchild, and sibling relationships, but also more diverse household structures where non-relative kinship networks may have influence on the shaping of partisan identity among the youngest individual within a household.

The result of our data processing is four variables of interest when modeling party transmission to the youngest member of the household in a household from those in the two older age cohorts as well as for those sibling-aged: party registration, gender, race/ethnicity, and naturalization status. For example, we are able to determine the percentage of those aged 35-60 in the household affiliated with the Democratic or Republican party or as a NPA in each of the other three age cohorts. We also construct a measure of the racial/ethnic makeup of older household members (Black, Hispanic, White, and other) in each age cohort, and calculate the share of naturalized citizens in each age cohorts. These variables allow us to consider party transmission in heterogeneous households.

We then run a series of multinomial logistic regression models to explore the interaction between a young voter's individual traits and the overall demographic and partisan composition of their household. To do this, our code first groups voters by the standardized address and isolates the youngest member (aged 18–20). We then calculate the number of every other household member who falls into different age cohorts—parent-aged, elder-aged, and

⁹ Again, our analysis combines NPAs and minor party registrants due to the small number of minor party registrants.

sibling-aged. Next, we considered the total count of age cohort groups and the distribution of their gender, race, party registration, and naturalization status. For instance, if a household has four adults in the 35–60 age range, our script notes how many of them are female versus male, registered as Democrats, Republicans, or NPAs, and whether they were born in the United States or are naturalized citizens. It then converts these raw counts into proportions, for example, the fraction of older household members who are registered Democrats.

In our multinomial logit models, our baseline model only uses the household's youngest voters' attributes (e.g., race/ethnicity, gender, and naturalized status) to predict their party registration (Democrat, Republican, or NPA). In subsequent models (e.g., "Parent-aged in Household," "Elders in Household," "Sibling-aged in Household"), we incorporate our aggregate household measures into the regressions with the youngest member's own characteristics to calculate household effects. Finally, we offer multinomial logit models that omit altogether the youngest member's individual-level traits, relying only on household proportions to predict the youngest member's party registration. This allows us to explain how much of a young person's party registration choice is the result purely of the kinship network within a household. Our approach allows us to compare the effects of personal demographics with the effects that emerge when we account for the composition of the household traits. For instance, if a high fraction of the 35–60 age group are Democrats, we can observe whether that correlates with an increased likelihood of the youngest voter choosing to register as a Democrat.

Expectations

When trying to tease out whether kinship networks in a household affect the party registration of the youngest member of a household, it is important to consider the demographic traits of that youngest household member. In general, and in Florida in particular circa 2014, younger voters—our population of interest— are more likely to register as Democrats or NPA than as Republicans (Abramowitz 2018), although the likelihood of registering as an independent (NPA) has steadily

increased over time (McGhee and Krimm 2009). More so, younger Black and Hispanics have been more likely to register Democrats (Dawson 1995; Barreto 2010), though Cuban Americans in Florida have historically leaned Republican (Alvarez and Bedolla 2003). Young women, including in Florida, have generally been more likely than men to register as Democrats than Republicans (Petrocik 1981). As for naturalized citizens (who we identify as having been born outside of the U.S.) are generally less likely to identify with a political party (Hajnal and Lee 2011).

Holding constant these individual-level (baseline) factors, we expect that young adults (18-20 years old) living in households with multiple registered voters will register with the same political party of others living in the household. Research shows that in a homogeneous family, adolescents are more likely to adopt their parents' party identity (Nieuwbeerta and Wittebrood 1995). However, in households with heterogeneous party registrations, young adults may feel confused or cross-pressured, which could lead them to choose NPA or the party of one of their parents. We expect young adults living in households with older women who are registered to vote, as well as older female siblings, to be more likely to register as Democrats, and we also expect young adults residing in households with older naturalized citizens to be more likely to register as NPAs, given their family members' political experiences.

Findings

Motivated by understandings of how kinship affects the decision to register with a political party, we begin our analysis with a multinomial logistic regression model that estimates the likelihood of the youngest member of a household registering as a Democrat or a Republican (with NPA as the reference category), circa 2014. Our multinomial regression predicts the probability that the youngest member of the household is registered as one of the three mutually exclusive categories by estimating the independent impact of each variable (race/ethnicity, gender, naturalization status, and most importantly, the gender, party, and naturalization status of other cohorts in the household.

¹⁰ We specifically choose the date November 4, 2014, Election Day, as in future iterations of this project we will be tracking these young adults' party registration after they move out of the roost.

Our baseline model predicts Republican and Democratic party registration compared to the omitted category, NPA. The baseline model (Model 1) and three other models with individual-level and household-level data (Models 2-4) are provided in the Appendix in Table A2. Model 1 only includes individual-level data for the youngest member of the household: his or her race/ethnicity (with White as the reference group), gender (with a male and those with unreported gender as the reference group), and naturalization status (with U.S.-born as the reference group). To reiterate, to establish a baseline for the party registration of the youngest member of a household, Model 1 does *not* take into account the possibility of party transmission from other members of the household, but Models 2-4 also include household factors, whereas Models 5-7 in Table A3 only consider household factors.

Since coefficient estimates from multinomial logistic regressions are not directly interpretable due to the non-linear nature of these models, for ease of interpretation, we calculate and report the average marginal effects (AME) for each predictor variable for the two tables in Figure 1 and Figure 2. This allows us to determine how each explanatory variable on average changes predicted probability of each outcome, holding other values constant. For the categorical variables, the AMEs are expressed as the difference between the lowest and the highest value. For the household continuous variables, we calculate the percentage point change.

We begin with Model 1 in Table A2. We find that the youngest member of a household is more likely to register as a Democrat if they are Black, Hispanic, and female; they are more likely to register as a Republican if they are White (the race/ethnicity reference category) and not female; and more likely to register NPA if they are Hispanic or of another race/ethnicity and if they are a naturalized U.S. citizen, all else equal.

In Model 1 in Figure 1, we observe that the youngest Black and Hispanic registered voter in the household, is roughly 50 and 13 percentage points, respectively, more likely to register as a Democrat than a comparable White 18-20 year old, all else equal. From the coefficients in Model 1, we find that the youngest female member of the household (relative to a male or unknown gender), all else equal, is 4 percentage points more likely to register as a Democrat, and a naturalized

citizen is almost a half percentage point more likely to register as a Democrat than someone who is U.S.born. We see negative coefficients across the board for the likelihood of a similar youngest member of a household registering as a Republican, and (by construction) a mix of positive and negative coefficients for the youngest member of a household registering NPA. For example, if the youngest member of the household is Black, they are 33 and 16 percentage points less likely to register as a Republican or a NPA, all else considered, and a naturalized U.S. citizen is nearly 6 percentage points more likely to register as NPA, all else equal.

In Model 2, Model 3, and Model 4 in Table A2, we introduce our household composition measures for registered voters in a household who are parental-age (aged 35-60), elderly (aged 61 or older), or sibling-aged (also aged 18-20, but older than the youngest member) in households that have at least one registered voter who is 18-20 years-old. Our household measures include the share of party registration of parental-aged individuals in the household who are Republicans or Democrats (with NPA as the reference category), the share of females of parental-age in the household (with the share of parental-aged men and of unknown gender as the reference category), and the share of naturalized registered voters in each age cohort in the household. We are interested in identifying effects of household composition on the youngest member of the household's likelihood of registering as a Democrat, Republican, or NPA, while also controlling for the individual-level factors of the youngest member. ¹¹

As Figure 1, Model 2 shows, when the youngest member of the household is Black or Hispanic, they are roughly 29 and 7 percentage points, respectively, more likely to register as a Democrat than the comparable youngest White member of a household). In contrast, the AME for Black and Hispanic registering as a Republican is strongly negative (-22 and - 11 percentage points, respectively). As with the baseline model, the youngest female in the household is more likely to register as a Democrat, and if the youngest member of the household is a naturalized citizen, they are more likely to register as a NPA.

More importantly, turning to household party transmission as shown in Figure 1 Model, when

¹¹ We exclude the household measure of race/ethnicity due to the high household correlation among the different age cohorts with the youngest household member's race/ethnicity.

Figure 1: Average Marginal Effects from Multinomial Logistic Regression of Youngest in Household Registering as a Democrat, Republican, or NPA, *without and with* Households

Model 1: 18-20 Year-old Only

	DEM			REP			NPA	
Variable	AME (pp)	z-score	Variable	AME (pp)	z-score	Variable	AME (pp)	z-scor
Black	49.81	1.54	Black	-33.33	-0.93	Black	-16.47	-0.5
Hispanic	12.85	0.52	Hispanic	-18.84	-0.55	Hispanic	5.98	0.2
Other	7.11	0.36	Other	-19.89	-0.61	Other	12.77	0.4
Female	4.17	0.14	Female	-1.65	-0.05	Female	-2.52	-0.0
Naturalized	0.46	0.02	Naturalized	-6.35	-0.13	Naturalized	5.90	0.1

Model 2: 18-20 Year-old and Parent-aged in Household

DI	ΞM		R	REP			NPA	
Variable	AME (pp)	z-score	Variable	AME (pp)	z-score	Variable	AME (pp)	z-score
Black	28.89	0.92	Black	-22.11	-0.81	Black	-6.78	-0.21
Hispanic	7.33	0.30	Hispanic	-11.21	-0.38	Hispanic	3.88	0.15
Other	1.38	0.07	Other	-13.82	-0.64	Other	12.44	0.44
Female	3.92	0.15	Female	-1.44	-0.06	Female	-2.49	-0.11
Naturalized	0.40	0.01	Naturalized	-2.10	-0.05	Naturalized	1.70	0.05
PctOlderFemale	0.18	0.01	PctOlderFemale	-2.07	-0.09	PctOlderFemale	1.89	0.05
PctOlderDEM	20.44	0.68	PctOlderDEM	-4.10	-0.13	PctOlderDEM	-16.34	-0.54
PctOlderREP	-11.93	-0.50	PctOlderREP	29.41	0.60	PctOlderREP	-17.48	-0.48
PctOlderNaturalized	-0.14	-0.00	PctOlderNaturalized	-2.66	-0.07	PctOlderNatura	lized 2.79	0.08

Model 3: 18-20 Year-old and Elder in Household

DI	ΞM		RI	EΡ		NI	PA	
Variable	AME (pp)	z-score	Variable	AME (pp)	z-score	Variable	AME (pp)	z-score
Black	38.03	0.56	Black	-25.07	-0.28	Black	-12.96	-0.14
Hispanic	8.29	0.12	Hispanic	-12.71	-0.15	Hispanic	4.41	0.06
Other	3.26	0.05	Other	-14.92	-0.33	Other	11.66	0.18
Female	4.17	0.08	Female	-1.06	-0.02	Female	-3.12	-0.06
Naturalized	1.55	0.02	Naturalized	-1.49	-0.01	Naturalized	-0.06	-0.00
PctOlderFemale	-1.17	-0.02	PctOlderFemale	0.21	0.00	PctOlderFemale	0.96	0.01
PctOlderDEM	15.05	0.21	PctOlderDEM	-4.09	-0.06	PctOlderDEM	-10.96	-0.15
PctOlderREP	-9.04	-0.16	PctOlderREP	18.98	0.16	PctOlderREP	-9.94	-0.11
PctOlderNaturalized	-1.07	-0.01	PctOlderNaturalized	-1.64	-0.02	PctOlderNaturalized	2.71	0.05

Model 4: Individual 18-20 Year-old and Sibling-aged in Household

D	EM		K	EP		NI	'A	
Variable	AME (pp)	z-score	Variable	$\mathrm{AME}\;(\mathrm{pp})$	z-score	Variable	$\mathrm{AME}\;(\mathrm{pp})$	z-score
Black	32.30	0.27	Black	-24.23	-0.22	Black	-8.07	-0.05
Hispanic	6.37	0.06	Hispanic	-12.30	-0.06	Hispanic	5.94	0.04
Other	0.79	0.01	Other	-13.54	-0.14	Other	12.75	0.11
Female	3.07	0.04	Female	-1.29	-0.01	Female	-1.78	-0.01
Naturalized	-2.33	-0.02	Naturalized	-1.02	-0.01	Naturalized	3.35	0.02
PctOlderFemale	-0.74	-0.01	PctOlderFemale	1.07	0.01	PctOlderFemale	-0.33	-0.00
PctOlderDEM	20.29	0.19	PctOlderDEM	-7.62	-0.06	PctOlderDEM	-12.68	-0.10
PctOlderREP	-10.27	-0.10	PctOlderREP	27.34	0.14	PctOlderREP	-17.06	-0.11
PctOlderNaturalized	1.00	0.01	PctOlderNaturalized	-2.42	-0.01	PctOlderNaturalized	1.42	0.01

Note: Average Marginal Effect estimates derived from Table A2, Models 1–4. AME is in percentage points.

the youngest registrant resides in a household with a higher proportion of Democratic voters aged 35-60, it substantially (+ 20 percentage points) increases the likelihood that they will register as a Democrat. The same is true for the youngest registrant living in an all-Republican household (+ 29 percentage points). As the share of females and naturalized citizens of those parental-aged in a household increases, in both scenarios, the youngest is more likely to register as NPA. Turning to the likelihood of the youngest member of a household registering NPA, in households in which all parental-aged registered voters are Democrats, the youngest member is 16 percentage points less likely to register as NPA; in households where the registrants of parental age are all Republican, the youngest member is more than 17 percentage points less likely to register NPA. NPA-dominated households appear to transmit a clear signal to the youngest registered voter residing in the household not to register with a party, all else equal.

In Model 3, we subset the dataset to include only households in which the youngest registrant (ages 18–20) lives with at least one elder (61 or older) registered voter in the household. As in earlier models (Figure 1), large racial and ethnic gaps persist, although the gap between White and Black youngest members of the household is much greater. Black and Hispanic youngest members remain about 38 and 8 percentage points more likely, respectively, to register as Democrats than comparable White individuals, with a corresponding decline in their likelihood of registering as Republicans or NPA. Turning to the effect of household party transmission, we observe clear partisan effects, even controlling for individual-level characteristics of the youngest member of the household. Households with a greater share of elder Democrats are associated with a higher probability that the youngest member registers as a Democrat; moving from a household with no Democratic elders to one where all elders are Democrats corresponds to roughly a 15 percentage point increase in Democratic registration for the youngest member, all else equal. A near mirror image holds on the Republican side: households dominated by Republican elders contribute to a 19 percentage point increase in the youngest member registering By contrast, the shares of elder females or naturalized elders have little measurable effect on whether the youngest member registers as a Democrat or a Republican. In

households with at least one elder registered voter, we again find the likelihood of the youngest member of the household registering as a NPA is inversely related to those with all Democratic or all Republican elders.

We see similar patterns of household party transmission, though surprisingly even stronger, in Model 4, where we limit the household sample to just the other youngest household members. The party registration of sibling-aged registrants has a pronounced effect on the party registration of the youngest member of the household, controlling for individual-level effects of the youngest registrant. As the share of Democratic sibling-aged registrants in the household increases from no Democrats to all Democrats, the youngest member becomes roughly 20 percentage points more likely to register as a Democrat, while a household with all Republican sibling-aged registrants increases the probability of the youngest registering as a Republican by about 27 percentage points. Gender and naturalization status of sibling-aged household members have little impact on whether the youngest household member registers as a Democrat or a Republican. Finally, we find that partisan households discourage non-partisan registration, and conversely, that households in which no sibling-age members are Democrats or Republicans, the youngest member is much less likely to register as a Democrat (-13 percentage points) or Republican (-17 percentage points), indicating that the lack of partisan socialization operates even in households with similarly aged siblings.

We now turn to the effects of household party transmission by offering models that *exclude* any information about the youngest individual's race/ethnicity, gender, and naturalization status. By stripping away the individual-level demographics of the youngest member of the household, we obtain a direct sense of how the household may meld a young adult's party registration decision, absent information about the youngest registered voter in the household. In Table A3 shown in the Appendix, we observe in all three models (parental-age, elders, and sibling-aged) the staying communal power of the household on the party registration of the youngest member of the household, irrespective of his or her race/ethnicity, gender, or naturalization status. Again, we offer AMEs for each variable in Figure 2, which allow us to more easily interpret the average change in predicted probability for the youngest member of the household being a Democrat,

Republican, or NPA, holding everything else constant.

With regard to household party transmission and the registration decision of the youngest member of the household, we find that households have a significant impact on shaping the youngest member's decision to register with or without a major political party. As Table A3, Model 5, Model 6, and Model 7 reveal, as the share of older Democrats (DEM:PctOlderDEM), or conversely Republicans (REP:PctOlderREP), in a household increases, so too does the decision of the youngest member of the household to register with the household's dominant party. Figure 2 shows that on average, as the household share of parental-aged (Model 5), elder (Model 6), and sibling-aged (Model 7) Democrats increases, so too does the probability that the youngest registered voter in the household registers as a Democrat (+21, +16 and +21 percentage points, respectively). Similarly, a larger Republican presence in all three household age categories is even more positively related to a greater likelihood of the youngest adult in the household registering as a Republican (+30, +20, and +28 percentage points, respectively).

In terms of the race/ethnicity of other registered voters in the household, the likelihood of the youngest member of the household registering as a Democrat increases as the share of Black, Hispanic, and other racial/ethnic members in a household increases across all three household age cohorts, relative to the share of other registered voters in each older age cohort in the household who are White. In contrast, the youngest household member is much more likely to register as a Republican if all the other household members are White, across all three age cohorts. For the three household age cohorts Figure 2 (Models 5-7), we find that the share of female household members has minimal impact on the party registration of the youngest member. Finally, across nearly every household age cohort, as the share of naturalized voters in the household increases, the youngest member is roughly 4 percentage points more likely to register as NPA compared to either a Democrat or a Republican, all else equal and knowing nothing about the youngest member of the household.

Figure 2: Average Marginal Effects from Multinomial Logistic Regression of Youngest in Household Registering as a Democrat, Republican, or NPA, *Households Only*

Model 5: Parent-aged in Household Only

DEM					
Variable	$\mathrm{AME}\;(\mathrm{pp})$	z-score			
PctOlderDEM	20.89	0.89			
PctOlderREP	-11.98	-0.59			
PctOlderFemale	0.76	0.02			
PctOlderHispanic	7.10	0.27			
PctOlderBlack	22.11	0.63			
PctOlderOther	8.00	0.15			
PctOlderNaturalized	-0.96	-0.02			

REP					
Variable	$\mathrm{AME}\;(\mathrm{pp})$	z-score			
PctOlderDEM	-4.08	-0.16			
PctOlderREP	29.62	1.23			
PctOlderFemale	-2.28	-0.08			
PctOlderHispanic	-12.72	-0.52			
PctOlderBlack	-24.26	-0.80			
PctOlderOther	-10.21	-0.31			
PctOlderNaturalized	-2.54	-0.07			

NPA					
Variable	$\mathrm{AME}\;(\mathrm{pp})$	z-score			
PctOlderDEM	-16.81	-0.73			
PctOlderREP	-17.63	-0.71			
PctOlderFemale	1.52	0.04			
PctOlderHispanic	5.62	0.22			
PctOlderBlack	2.14	0.07			
PctOlderOther	2.21	0.05			
PctOlderNaturalized	3.50	0.08			

Model 6: Elder in Household Only

DEM					
Variable	AME (pp)	z-score			
PctOlderDEM	15.94	0.24			
PctOlderREP	-9.19	-0.19			
PctOlderFemale	-0.80	-0.01			
PctOlderHispanic	7.79	0.10			
PctOlderBlack	29.11	0.42			
PctOlderOther	11.99	0.09			
PctOlderNaturalized	-2.13	-0.02			

REP					
Variable	AME (pp)	z-score			
PctOlderDEM	-4.15	-0.07			
PctOlderREP	19.51	0.29			
PctOlderFemale	0.25	0.00			
PctOlderHispanic	-12.79	-0.23			
PctOlderBlack	-29.46	-0.41			
PctOlderOther	-10.33	-0.14			
PctOlderNaturalized	-1.33	-0.02			

NPA					
Variable	$\mathrm{AME}\ (\mathrm{pp})$	z-score			
PctOlderDEM	-11.79	-0.25			
PctOlderREP	-10.32	-0.15			
PctOlderFemale	0.56	0.01			
PctOlderHispanic	5.00	0.09			
PctOlderBlack	0.35	0.00			
PctOlderOther	-1.66	-0.01			
PctOlderNaturalized	3.46	0.04			

Model 7: Sibling-aged in Household Only

DEM					
Variable	$\mathrm{AME}\;(\mathrm{pp})$	z-score			
PctOlderDEM	21.36	0.19			
PctOlderREP	-10.32	-0.13			
PctOlderFemale	-0.28	-0.00			
PctOlderHispanic	4.77	0.05			
PctOlderBlack	21.81	0.23			
PctOlderOther	8.64	0.04			
PctOlderNaturalized	-0.19	-0.00			

Variable	AME (pp)	z-score
PctOlderDEM	-8.07	-0.10
PctOlderREP	27.76	0.32
PctOlderFemale	0.76	0.00
PctOlderHispanic	-11.15	-0.15
PctOlderBlack	-22.74	-0.20
PctOlderOther	-7.71	-0.07
PctOlderNaturalized	-4.32	-0.02

NPA			
Variable	$\mathrm{AME}\ (\mathrm{pp})$	z-score	
PctOlderDEM	-13.29	-0.18	
PctOlderREP	-17.43	-0.17	
PctOlderFemale	-0.47	-0.00	
PctOlderHispanic	6.38	0.07	
PctOlderBlack	0.93	0.01	
PctOlderOther	-0.93	-0.01	
PctOlderNaturalized	4.51	0.02	

Note: Average Marginal Effect estimates derived from Table A3, Models 5-7. AME is in percentage points.

Conclusion

By focusing on households as the unit of analysis, rather than families or parents *per se*, our study offers a novel approach to understanding party transmission in the American context. In contrast to other scholarly approaches that assume a top-down transmission of partisan identification in the nuclear family, we conceptualize the household as a kinship network, with proximity rather than blood or legal ties shaping young adults' decision to register with or without a party.

Our use of administrative data, not survey data, along the lines of European scholars, is also quite uncommon in the American context. This strategy marks a departure from traditional survey-based analyses, allowing us to access more accurate and comprehensive information about voters. Drawing on official election registration records from millions of Florida voters, we identify the youngest registered adult in multigenerational households. We then group other household members into parent-aged (35–60), elder (61–100), and sibling-aged (18–20) cohorts, calculating their party, gender, race/ethnicity, and naturalization compositions. We then merge these household kinships with the youngest voter's individual traits (race, gender, naturalization).

Our multinomial logistic regression models provide us with log-odds estimates, which indicate how each individual and household-level factor relates to young voters' registration decisions. To interpret these results intuitively, we converted the log-odds into AMEs. We find that the individual traits of the youngest household member help to predict which party they will join; for instance, Black and female young voters are more likely to register as Democrats, while White young adults show higher Republican probabilities and young Hispanics are more likely to register as NPAs. More importantly, though, we find that the household context intensifies those baseline tendencies. In households with a large share of parent-aged or elder household members who are Democrats, the probability that the youngest member of the household joins the Democratic Party increases substantially, even when holding constant the youngest registrants' socio-demographic traits. We find nearly mirror image results in Republican-dominant households. We find stronger effects for the sibling-aged than for elder household models, effects that in some cases are even as strong as for parental-aged cohorts in the household.

Of course, there are limitations to our research. First, our analysis of Florida households with registered voters may not be representative of all households in Florida, much less those in other states. Second, our findings drawing on administrative data in Florida in 2014 may not travel well, as they could be contingent on unique factors that led young (18-20 years-old) individuals coming of age and registering to vote in the years immediately following President Barack Obama's successful reelection bid (including in Florida). We could very well find different individual-level and collective household influences on a young voter's decision to register as a Democrat or a Republican if we probe other time periods, such as prior to President Trump's Third, we do not at this time examine whether the household party reelection in 2024. transmission that we identify is long-lasting, that is, whether a young adult's registration that is influenced by their household kin endures. Fourth, we have no way of knowing whether those residing in a household are related, but we assume that they are kin. Finally, we do not have any purchase on the separate question about why some young individuals decide to register to vote in the first place as opposed to not registering, as our universe are those who chose to register and whose voter registration is in a household with at least one older adult.

More broadly, though, our study has implications for our understanding of the intergenerational transmission of partisanship. In future iterations of this paper, we plan to examine whether differences in household party transmission may mobilize younger voters to turn out to vote. By contextualizing the household as a primary basis for the adoption of political identification, our study provides evidence that underscores the importance of politicians enacting intergenerational, as opposed to just individual generation, influence.

References

- Abramowitz, Alan I. 2018. *The Great Alignment: Race, Party Transformation, and the Rise of Donald Trump.* New Haven: Yale University Press.
- Akee, Randall, William Copeland, E Jane Costello, John B Holbein and Emilia Simeonova. 2018. Family income and the intergenerational transmission of voting behavior: Evidence from an income intervention. Technical report National Bureau of Economic Research.
- Alvarez, R Michael and Lisa Garcia Bedolla. 2003. "The foundations of Latino voter partisanship: evidence from the 2000 election." *The Journal of politics* 65(1):31–49.
- Amos, Brian, Daniel A Smith and Casey Ste Claire. 2017. "Reprecincting and Voting Behavior." *Political Behavior* 39:133–156.
- Baringer, Anna, Michael C. Herron and Daniel A. Smith. 2020. "Voting by Mail and Ballot Rejection: Lessons from Florida for Elections in the Age of the Coronavirus." *Election Law Journal: Rules, Politics, and Policy* 19(3):289–320.
- Barreto, Matt. 2010. *Ethnic cues: The role of shared ethnicity in Latino political participation*. University of Michigan Press.
- Borkowska, Magda and Renee Luthra. 2024. "Socialization disrupted: The intergenerational transmission of political engagement in immigrant families." *International Migration Review* 58(1):238–265.
- Campbell, Angus, Philip E Converse, Warren E Miller and Donald E Stokes. 1960. *The American Voter*. Chicago: University of Chicago Press.
- Chan, Tak Wing and Vikki Boliver. 2013. "The grandparents effect in social mobility: Evidence from British birth cohort studies." *American Sociological Review* 78(4):662–678.
- Dalton, Russell J. 1980. "Reassessing parental socialization: Indicator unreliability versus generational transfer." *American Political Science Review* 74(2):421–431.
- Dawson, Michael C. 1995. *Behind the mule: Race and class in African-American politics*. Princeton University Press.
- Eckstein, Katharina, Jan Šerek and Peter Noack. 2018. "And what about siblings? A longitudinal

- analysis of sibling effects on youth's intergroup attitudes." *Journal of youth and adolescence* 47:383–397.
- Fitzgerald, Jennifer and K Amber Curtis. 2012. "Partisan discord in the family and political engagement: A comparative behavioral analysis." *The Journal of Politics* 74(1):129–141.
- Fitzgerald, Jennifer and Pavel Bacovsky. 2024. "Young Citizens' Party Support: The "When" and "Who" of Political Influence within Families." *Political Studies* 72(2):634–651.
- Gidengil, Elisabeth, Hanna Wass and Maria Valaste. 2016. "Political socialization and voting: The parent–child link in turnout." *Political Research Quarterly* 69(2):373–383.
- Gidengil, Elisabeth, Hannu Lahtinen, Hanna Wass and Jani Erola. 2021. "From generation to generation: The role of grandparents in the intergenerational transmission of (non-) voting." *Political Research Quarterly* 74(4):1137–1151.
- Green, Donald, Bradley Palmquist and Eric Schickler. 2002. *Partisan Hearts and Minds: Political Parties and the Social Identities of Voters*. New Haven: Yale University Press.
- Hajnal, Zoltan L. and Taeku Lee. 2011. Why Americans Don't Join the Party: Race, Immigration, and the Failure (of Political Parties) to Engage the Electorate. Princeton University Press.
- Herron, Michael C and Daniel A Smith. 2013. "The Effects of House Bill 1355 on Voter Registration in Florida." *State Politics & Policy Quarterly* 13(3):279–305.
- Herron, Michael C and Daniel A Smith. 2014. "Race, party, and the consequences of restricting early voting in Florida in the 2012 general election." *Political Research Quarterly* 67(3):646–665.
- Herron, Michael C and Daniel A Smith. 2016. "Precinct Resources and Voter Wait Times." *Electoral Studies* 42:249–263.
- Hood III, MV Trey, Seth C McKee, Enrijeta Shino and Daniel A Smith. 2025. "Not a Teammate and Not a Fan: Probing the Identities of Unaffiliated Registered Voters." *State Politics & Policy Quarterly* 25(2):260–269.
- Hooghe, Marc and Joris Boonen. 2015. "The intergenerational transmission of voting intentions in a multiparty setting: An analysis of voting intentions and political discussion among 15-year-old

- adolescents and their parents in Belgium." Youth & Society 47(1):125–147.
- Jennings, M Kent, Laura Stoker and Jake Bowers. 2009. "Politics across generations: Family transmission reexamined." *The Journal of Politics* 71(3):782–799.
- Jennings, M Kent and Richard G Niemi. 1968. "The transmission of political values from parent to child." *American political science review* 62(1):169–184.
- Jennings, M Kent and Richard G Niemi. 1981. *Generations and politics: A panel study of young adults and their parents*. Princeton University Press.
- Lee, Haena, Lindsay H Ryan, Mary Beth Ofstedal and Jacqui Smith. 2021. "Multigenerational households during childhood and trajectories of cognitive functioning among US older adults." *The Journals of Gerontology: Series B* 76(6):1161–1172.
- Mason, Lilliana and Julie Wronski. 2018. "One tribe to bind them all: How our social group attachments strengthen partisanship." *Political Psychology* 39:257–277.
- McGhee, Eric and Daniel Krimm. 2009. "Party registration and the geography of party polarization." *Polity* 41(3):345–367.
- Merelman, Richard M. 1970. "Electoral instability and the American party system." *The Journal of Politics* 32(1):115–139.
- Milevsky, Avidan. 2016. Sibling issues in therapy: Research and practice with children, adolescents and adults. Springer.
- Nieuwbeerta, Paul and Karin Wittebrood. 1995. "Intergenerational transmission of political party preference in the Netherlands." *Social Science Research* 24(3):243–261.
- Ojeda, Christopher and Peter K. Hatemi. 2015. "Accounting for the Child in the Transmission of Party Identification." *American Sociological Review* 80(6):1150–1174.
- Petrocik, John R. 1981. Party Coalitions: Realignment and the Decline of the New Deal Party System. University of Chicago Press.
- Prior, Markus. 2013. "Media and political polarization." *Annual review of political science* 16(1):101–127.
- Rodseth, Lars and Richard Wrangham. 2004. "Human kinship: A continuation of politics by other

- means." Kinship and behavior in primates 389419.
- Sapiro, Virginia. 2004. "Not your parents' political socialization: Introduction for a new generation." *Annual Review of Political Science* 7(1):1–23.
- Schneider, David M. 2014. American kinship: A cultural account. University of Chicago Press.
- Shino, Enrijeta and Daniel A. Smith. 2018. "Timing the Habit: Voter Registration and Turnout." *Electoral Studies* 51:72–82.
- Slomkowski, Cheryl, Richard Rende, Katherine J Conger, Ronald L Simons and Rand D Conger. 2001. "Sisters, brothers, and delinquency: Evaluating social influence during early and middle adolescence." *Child development* 72(1):271–283.
- Urbatsch, Robert. 2011. "Sibling ideological influence: A natural experiment." *British Journal of Political Science* 41(4):693–712.
- Verba, Sidney, Kay Lehman Schlozman and Nancy Burns. 2005. Family ties: Understanding the intergenerational transmission of political participation. In *The social logic of politics: Personal networks as context for political behavior*, ed. Alan S Zuckerman. Temple University Press pp. 95–114.
- Whiteman, Shawn D, Susan M McHale and Ann C Crouter. 2007. "Competing processes of sibling influence: Observational learning and sibling deidentification." *Social Development* 16(4):642–661.
- Wong, Janelle and Vivian Tseng. 2008. "Political socialisation in immigrant families: Challenging top-down parental socialisation models." *Journal of Ethnic and Migration Studies* 34(1):151–168.
- Zuckerman, Alan S, Josip Dasovic and Jennifer Fitzgerald. 2007. *Partisan families*. Cambridge University Press.

Appendix

Table A1: Demographic summary of Florida statewide voter file, 2014

Demographic	Count	Percent
Age		
18-20	406,545	3.4%
35-60	5,055,994	42.5%
61-100	3,954,368	33.2%
Party		
DEM	4,618,866	38.8%
NPA	3,129,393	26.3%
REP	4,146,233	34.9%
Race & Ethnicity		
Black	1,610,382	13.5%
Hispanic	1,736,541	14.6%
Other	717,315	6%
White	7,830,254	65.8%
Gender		
Female	6,321,742	53.1%
Male	5,352,660	45%
Unknown	220,090	1.9%
Naturalization		
Yes	1,086,556	9.1%

Table A2: Multinomial Logit Models, Likelihood of Registering with a Party

	Model 1	Model 2	Model 3	Model 4
DEM: (Intercept)	-0.78(0.01)***	-1.22(0.02)***	-0.99(0.04)***	-1.22 (0.06)***
DEM: Black	1.69 (0.01)***	1.13 (0.02)***	1.36 (0.04)***	1.29 (0.07)***
DEM: Hispanic	$0.33(0.01)^{***}$	$0.26 (0.02)^{***}$	$0.23 (0.04)^{***}$	$0.19 (0.07)^{**}$
DEM: Other	0.00(0.02)	-0.15 (0.02)***	$-0.10 (0.04)^*$	$-0.18 (0.09)^*$
DEM: Female	$0.22 (0.01)^{***}$	$0.24 (0.01)^{***}$	$0.24 (0.03)^{***}$	$0.19 (0.05)^{***}$
DEM: Naturalized	-0.11 (0.03)***	-0.01 (0.03)	0.06(0.07)	-0.19(0.16)
REP: (Intercept)	$0.15 (0.01)^{***}$	$-0.96 (0.02)^{***}$	$-0.58 (0.04)^{***}$	$-0.71 (0.06)^{***}$
REP: Black	-2.29 (0.03)***	-1.43 (0.03)***	$-1.68 (0.08)^{***}$	-1.51 (0.13)***
REP: Hispanic	$-1.06 (0.02)^{***}$	$-0.73 (0.02)^{***}$	$-0.82 (0.04)^{***}$	$-0.85 (0.07)^{***}$
REP: Other	-1.37 (0.02)***	-1.09(0.02)***	-1.19 (0.05)***	-1.08 (0.10)***
REP: Female	-0.01 (0.01)	$-0.03 (0.01)^*$	0.01 (0.03)	-0.04 (0.05)
REP: Naturalized	$-0.42 (0.03)^{***}$	$-0.15 (0.04)^{***}$	-0.08(0.08)	-0.12(0.20)
DEM: PctOlderDEM		$1.30 (0.02)^{***}$	$0.85 (0.04)^{***}$	$1.30 (0.06)^{***}$
DEM: PctOlderREP		$-0.22 (0.02)^{***}$	$-0.15 (0.04)^{***}$	$-0.18 (0.08)^*$
DEM: PctOlderFemale		-0.03(0.02)	$-0.07 (0.03)^*$	-0.03 (0.05)
DEM: PctOlderNaturalized		$-0.06 (0.02)^{***}$	$-0.10 (0.04)^*$	0.02(0.16)
REP: PctOlderDEM		$0.10 (0.02)^{***}$	0.02(0.05)	$-0.17 (0.08)^*$
REP: PctOlderREP		$2.00 (0.02)^{***}$	$1.22 (0.04)^{***}$	$1.90 (0.06)^{***}$
REP: PctOlderFemale		-0.15 (0.02)***	-0.01 (0.03)	0.07(0.05)
REP: PctOlderNaturalized		$-0.20 (0.03)^{***}$	$-0.15 (0.05)^{**}$	-0.17(0.20)
AIC	421844.21	374274.51	62503.65	18906.37
BIC	421967.67	374480.27	62672.56	19052.92
Log Likelihood	-210910.11	-187117.25	-31231.83	-9433.19
Deviance	421820.21	374234.51	62463.65	18866.37
Num. obs.	217119	217094	34389	11245
K	3	3	3	3

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table A3: Multinomial Logit Models, Likelihood of Registering with a Party, Households Only

	Model 5	Model 6	Model 7
DEM: (Intercept)	-1.13 (0.02)***	-0.87 (0.04)***	-1.16 (0.05)***
DEM: PctOlderDEM	$1.31 (0.02)^{***}$	$0.88 (0.04)^{***}$	$1.33 (0.06)^{***}$
DEM: PctOlderREP	$-0.21 (0.02)^{***}$	-0.13 (0.04)**	-0.15(0.08)
DEM: PctOlderFemale	0.01(0.02)	-0.04(0.03)	-0.00(0.05)
DEM: PctOlderBlack	$0.99 (0.02)^{***}$	$1.13 (0.04)^{***}$	$1.05 (0.07)^{***}$
DEM: PctOlderHispanic	$0.22 (0.02)^{***}$	$0.19 (0.04)^{***}$	0.10(0.07)
DEM: PctOlderOther	$0.33 (0.03)^{***}$	$0.50 (0.06)^{***}$	$0.44 (0.08)^{***}$
DEM: PctOlderNaturalized	-0.11 (0.02)***	$-0.16 (0.04)^{***}$	-0.10(0.13)
REP: (Intercept)	-1.04 (0.02)***	$-0.72 (0.04)^{***}$	$-0.79 (0.05)^{***}$
REP: PctOlderDEM	$0.11 (0.02)^{***}$	0.04 (0.05)	$-0.17 (0.08)^*$
REP: PctOlderREP	$1.98 (0.02)^{***}$	$1.23 (0.04)^{***}$	$1.90 (0.06)^{***}$
REP: PctOlderFemale	$-0.16 (0.02)^{***}$	0.00(0.03)	0.05 (0.05)
REP: PctOlderBlack	$-1.38(0.03)^{***}$	$-1.53(0.08)^{***}$	$-1.28 (0.12)^{***}$
REP: PctOlderHispanic	-0.81 (0.02)***	$-0.77(0.04)^{***}$	$-0.75 (0.07)^{***}$
REP: PctOlderOther	$-0.61 (0.03)^{***}$	$-0.50 (0.07)^{***}$	$-0.41 (0.09)^{***}$
REP: PctOlderNaturalized	-0.21 (0.03)***	-0.14 (0.05)**	$-0.33 (0.17)^*$
AIC	379843.48	64003.76	19307.52
BIC	380008.10	64138.90	19424.77
Log Likelihood	-189905.74	-31985.88	-9637.76
Deviance	379811.48	63971.76	19275.52
Num. obs.	217263	34426	11250
K	3	3	3

^{***}p < 0.001; **p < 0.01; *p < 0.05