THE CRIMINAL LIABILITY OF ARTIFICIAL INTELLIGENCE ENTITIES—FROM SCIENCE FICTION TO LEGAL SOCIAL CONTROL

Gabriel Hallevy

I. INTRODUCTION: THE LEGAL PROBLEM

Can thinking machines be subject to criminal law? In 1981, a 37-year-old Japanese employee of a motorcycle factory was killed by an
artificial-intelligence robot working near him. The robot erroneously identified the employee as a threat to its mission, and calculated that the most efficient way to eliminate this threat was by pushing him into an adjacent operating machine. Using its very powerful hydraulic arm, the robot smashed the surprised worker into the operating machine, killing him instantly, and then resumed its duties with no one to interfere with its mission. Unfortunately, this is not science fiction, and the legal question is: Who is to be held liable for this cold-blooded, premeditated murder?

The technological world is changing rapidly. Robots and computers are replacing more and more simple human activities. As long as humanity used computers as mere tools, there was no real difference between computers and screwdrivers, cars, or telephones. When computers became sophisticated, we used to say that computers “think” for us. The problem began when computers evolved from “thinking” machines (machines that were programmed to perform defined thought processes/computing) into thinking machines (without quotation marks), or Artificial Intelligence (AI). AI is the capability of a machine to imitate intelligent behavior. AI is the simulation of human behavior and cognitive processes on a computer and hence is the study of the nature of the whole space of intelligent minds. AI research began in the 1940s and early 1950s. Since then, AI entities have become an integral part of modern human life, functioning much more sophisticatedly than other daily tools. Could they become dangerous?

In fact, they already are, as the above incident attests. In 1950, Isaac Asimov set down three fundamental laws of robotics in his science fiction masterpiece *I, Robot*. (1) A robot may not injure a human being

2. *Id.*
3. *Id.*
7. *Id.*
8. *Id.* at 4-5.
or, through inaction, allow a human being to come to harm;10 (2) A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law;11 (3) A robot must protect its own existence, as long as such protection does not conflict with the First or Second Laws.12

These three fundamental laws are obviously contradictory.13 What if a man orders a robot to hurt another person for the own good of the other person? What if the robot is in police service and the commander of the mission orders it to arrest a suspect and the suspect resists arrest? Or what if the robot is in medical service and is ordered to perform a surgical procedure on a patient, the patient objects, but the medical doctor insists that the procedure is for the patient’s own good, and repeats the order to the robot? Besides, Asimov’s fundamental laws of robotics relate only to robots.14 A robot without AI software would not be subject to Asimov’s laws, even if these laws had any real legal significance.15

The main question in that context is, what kind of laws or ethics are correct, and who is to decide? In order to cope with these same problems as they relate to humans, society devised criminal law.16 Criminal law embodies the most powerful legal social control in modern civilization.17 People’s fear of AI entities, in most cases, is based on the fact that AI entities are not considered to be subject to the law, specifically to criminal law.18 In the past, people were similarly fearful

10. ISAAC ASIMOV, I, ROBOT 40 (Doubleday 1950) [hereinafter ASIMOV, I, ROBOT].
11. Id.
12. Id..
13. Isaac Asimov himself wrote in his introduction to The Rest of Robots that “[t]here was just enough ambiguity in the Three Laws to provide the conflicts and uncertainties required for new stories, and, to my great relief, it seemed always to be possible to think up a new angle out of the sixty-one words of the Three Laws.” ISAAC ASIMOV, THE REST OF ROBOTS 43 (Doubleday 1964).
15. Id.
16. WILLIAM M. CLARK & WILLIAM L. MARSHALL, LAW OF CRIMES 1-2 (7th ed., 1967) (“Human control on social behavior is the purpose of criminal law.”). See Davida A. Williams, Note, Punishing the Faithful: Freud, Religion, and the Law, 24 CARDOZO L. REV. 2181 (citing WAYNE R. LAFAVE & AUSTIN W. SCOTT, JR., CRIMINAL LAW 22 (2d ed. 1986) (noting that the basic purpose of criminal law is to make people do what society desires and not do what society deems improper)). Criminal law is aimed at preventing people from doing the undesirable and, thus, the enforcement of criminal laws through punishment should be deemed a necessity. See id.
17. Id.
19. The apprehension that AI entities evoke may have arisen due to Hollywood’s depiction of AI entities in numerous films, such as 2001: A SPACE ODYSSEY (Metro-Goldwyn-Mayer 1968), and the modern trilogy, The Matrix, in which AI entities are not subject to the law. THE MATRIX
of corporations and their power to commit a spectrum of crimes, but because corporations are legal entities subject to criminal and corporate law, that kind of fear has been significantly reduced.21

Therefore, the modern question relating to AI entities becomes: Does the growing intelligence of AI entities subject them to legal social control as any other legal entity? This article attempts to work out a legal solution to the problem of the criminal liability of AI entities. At the outset, a definition of an AI entity will be presented. Based on that definition, this article will then propose and introduce three models of AI entity criminal liability:23

(1) The Perpetration-via-Another Liability Model
(2) The Natural-Probable-Consequence Liability Model
(3) The Direct Liability Model.

These three models might be applied separately, but in many situations, a coordinated combination of them (all or some of them) is required in order to complete the legal structure of criminal liability.24 Once we examine the possibility of legally imposing criminal liability on AI entities, then the question of punishment must be addressed. How can an AI entity serve a sentence of incarceration? How can capital punishment be imposed on an AI entity? How can probation, a pecuniary fine, etc. be imposed on an AI entity? Consequently, it is
necessary to formulate viable forms of punishment in order to impose criminal liability practically on AI entities.

II. WHAT IS AN ARTIFICIAL INTELLIGENCE ENTITY? – MACHINA SAPIENS
 – A “THINKING” MACHINE OR A THINKING MACHINE

For some years, there has been significant controversy about the very essence of an AI entity.26 Futurologists have proclaimed the birth of a new species, machina sapiens, which will share the human place as intelligent creatures on earth.27 Critics have argued that a “thinking machine” is an oxymoron.28 Machines, including computers, with their foundations of cold logic, can never be insightful or creative as humans.29 This controversy raises the basic questions of the essence of humanity (Do human beings function as thinking machines?) and of AI (Can there be thinking machines?).30

There are five attributes that one would expect an intelligent entity to have.31 The first is communication.32 One can communicate with an intelligent entity.33 The easier it is to communicate with an entity, the more intelligent the entity seems.34 One can communicate with a dog, but not about Einstein’s Theory of Relativity.35 One can communicate with a little child about Einstein’s theory, but it requires a discussion in terms that a child can comprehend.36 The second is internal

25. The general punishment adjustment considerations are discussed hereinafter at Part IV.
26. See, e.g., Terry Winograd, Thinking Machines: Can There Be? Are We?, THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE 167 (Derek Partridge & Yorick Wilks eds., 2006).
27. The information is integrated and creates a full image of sensory information, perception, dynamic action and reaction, and cognition. B.G. FITCH ET AL., IBM RESEARCH REPORT, BLUE MATTER: AN APPLICATION FRAMEWORK FOR MOLECULAR SIMULATION ON BLUE GENE (2003), http://leitl.org/docs/nano/bluematter.pdf. This platform simulates brain capabilities, and eventually, it is supposed to simulate real thought processes. Id. The final application of this algorithm contains not only analog and digital circuits, metal or plastics, but also protein-based biologic surfaces. Id.
28. Id.
29. Id.
32. Id. at 60.
33. Id.
34. Id.
35. Id.
knowledge. An intelligent entity is expected to have some knowledge about itself.

The third is external knowledge. An intelligent entity is expected to know about the outside world, to learn about it, and utilize that information. The fourth is goal-driven behavior. An intelligent entity is expected to take action in order to achieve its goals. The fifth is creativity. An intelligent entity is expected to have some degree of creativity. In this context, creativity means the ability to take alternate action when the initial action fails. A fly tries to exit a room and bumps into a windowpane continues to repeat the same futile behavior. When an AI robot bumps into a window, it tries to exit using the door. Most AI entities possess these five attributes by definition. Some twenty-first century types of AI entities possess even more attributes that enable them to act in far more sophisticated ways.

An AI entity has a wide variety of applications, including in robots. A robot can be designed to imitate the physical capabilities of a human being, and these capabilities can be improved. A robot is capable of being physically faster and stronger than a human being. The AI software installed in it also enables the robot to calculate many complicated calculations faster and simultaneously, or to “think” faster. An AI entity is capable of learning and of gaining experience, and experience is a useful way of learning. All these attributes create

37. Id.
38. Id. at 60.
39. Id.
40. Id.
41. Schank, supra note 31, at 60.
42. Id.
43. Id.
44. Id. at 60-62.
45. In November 2009, during the Supercomputing Conference in Portland Oregon (SC 09), IMB scientists and others announced that they succeeded in creating a new algorithm named “Blue Matter,” which possesses the thinking capabilities of a cat Capps, supra note 9; International Conference for High Performance Computing, Networking, Storage and Analysis, SC09, http://sc09.supercomputing.org/ (last visited Jan. 10, 2010). This algorithm collects information from very many units with parallel and distributed connections. The information is integrated and creates a full image of sensory information, perception, dynamic action and reaction, and cognition. Fitch, supra note 27. This platform simulates brain capabilities, and eventually, it is supposed to simulate real thought processes. Id. The final application of this algorithm contains not only analog and digital circuits, metal or plastics, but also protein-based biologic surfaces. Id.
46. Patnaik, supra note 6, at v.
47. Id. at 7-8
48. Id. at v.
49. Id.
50. Id.
III. THREE MODELS OF THE CRIMINAL LIABILITY OF ARTIFICIAL INTELLIGENCE ENTITIES

A. The Relevant General Requirements for the Imposition of Criminal Liability

The basic question of criminal law is the question of criminal liability; i.e., whether the specific entity (human or corporation) bears criminal liability for a specific offense committed at a specific point in time and space. In order to impose criminal liability upon a person, two main elements must exist. The first is the external or factual element—i.e., criminal conduct (actus reus)—while the other is the internal or mental element—i.e., knowledge or general intent vis-à-vis the conduct element (mens rea). If one element is missing, no criminal liability can be imposed.

The actus reus requirement is expressed mainly by acts or omissions. Sometimes, other external elements are required in addition to conduct, such as the specific results of that conduct and the specific circumstances underlying the conduct. The mens rea requirement has

53. See CLARK & MARSHALL, supra note 16, at 23.

54. JOSHUA DRESSLER, CASES AND MATERIALS ON CRIMINAL LAW 126 (2007).

55. Id.

56. Id.

various levels of mental elements. The highest level is expressed by
knowledge, while sometimes it is accompanied by a requirement of
intent or specific intention. Lower levels are expressed by negligence
(a reasonable person should have known) or by strict liability offenses.

No other criteria or capabilities are required in order to impose
criminal liability, not from humans, nor from any other kind of entity,
including corporations and AI entities. An entity might possess further
capabilities, however, in order to impose criminal liability; the existence
of *actus reus* and *mens rea* in the specific offense is quite enough. A
spider is capable of acting, but it is incapable of formulating the *mens
rea* requirement; therefore, a spider bite bears no criminal liability. A
parrot is capable of repeating words it hears, but it is incapable of
formulating the *mens rea* requirement for libel.

In order to impose criminal liability on any kind of entity, it must
be proven that the above two elements existed. When it has been
proven that a person committed the criminal act knowingly or with
criminal intent, that person is held criminally liable for that offense.
The relevant question concerning the criminal liability of AI entities is:
How can AI entities fulfill the two requirements of criminal liability?
This paper proposes the imposition of criminal liability on AI entities
using three possible models of liability: the Perpetration-via-Another
liability model; the Natural-Probable-Consequence liability model; and
the Direct liability model. The following is an explanation of these three
possible models.

59. DRESSLER, supra note 54, at 980-81 (4th ed. 2007); MODEL PENAL CODE § 2.02.
60. Id.; United States v. Youts, 229 F.3d 1312, 1316 (10th Cir. 2000).
64. DRESSLER, supra note 54, at 980-81; MODEL PENAL CODE § 2.02.
65. DRESSLER, supra note 54, at 126.
66. Id.
67. Id.
B. The Perpetration-via-Another Liability Model: Artificial Intelligence Entities as Innocent Agents

This first model does not consider the AI entity as possessing any human attributes. The AI entity is considered an innocent agent. Accordingly, due to that legal viewpoint, a machine is a machine, and is never human. However, one cannot ignore an AI entity’s capabilities, as mentioned above. Pursuant to this model, these capabilities are insufficient to deem the AI entity a perpetrator of an offense. These capabilities resemble the parallel capabilities of a mentally limited person, such as a child, a person who is mentally incompetent, or one who lacks a criminal state of mind.

Legally, when an offense is committed by an innocent agent (a child, a person who is mentally incompetent, or one who lacks a criminal state of mind to commit an offense) that person is criminally liable as a perpetrator-via-another. In such cases, the intermediary is regarded as a mere instrument, albeit a sophisticated instrument, while the party orchestrating the offense (the perpetrator-via-another) is the real perpetrator as a principal in the first degree and is held accountable for the conduct of the innocent agent.

The perpetrator’s liability is determined on the basis of the “instrument’s” conduct and his mental state. The derivative question relative to artificial intelligence entities is: Who is the perpetrator-via-another? There are two candidates: the first is the programmer of the AI software and the second is the user, or the end-user. A programmer of AI software might design a program in order to commit offenses via the

69. Maxey v. United States, 30 App. D.C. 63, 80 (App. D.C. 1907);
70. Johnson v. State, 142 Ala. 70, 71 (1904)
74. United States v. Bryan, 483 F.2d 88, 92 (3d Cir. 1973); Boushea v. United States, 173 F.2d 131, 134 (8th Cir. 1949); People v. Mutchler, 140 N.E. 820, 823 (Ill. 1923); State v. Runkles, 605 A.2d 111, 121 (Md. 1992); Parnell v. State, 912 S.W.2d 422, 424 (Ark. 1996); State v. Thomas, 619 S.W.2d 513, 514 (Tenn. 1981).
77. United States v. Tobon-Builes, 706 F.2d 1092, 1101 (11th Cir. 1983); United States v. Ruffin, 613 F.2d 408, 411 (2d Cir. 1979).
AI entity. For example: A programmer designs software for an operating robot. The robot is intentionally placed in a factory, and its software is designed to torch the factory at night when no one is there. The robot committed the arson, but the programmer is deemed the perpetrator.

The second person who might be considered the perpetrator-via-another is the user of the AI entity. The user did not program the software, but he uses the AI entity, including its software, for his own benefit. For example, a user purchases a servant-robot, which is designed to execute any order given by its master. The robot identifies the specific user as the master, and the master orders the robot to assault any invader of the house. The robot executes the order exactly as ordered. This is not different than a person who orders his dog to attack any trespasser. The robot committed the assault, but the user is deemed the perpetrator.

In both scenarios, the actual offense was committed by the AI entity. The programmer or the user did not perform any action conforming to the definition of a specific offense; therefore, they do not meet the actus reus requirement of the specific offense. The perpetration-via-another liability model considers the action committed by the AI entity as if it had been the programmer’s or the user’s action. The legal basis for liability is the instrumental usage of the AI entity as an innocent agent. No mental attribute required for the imposition of criminal liability is attributed to the AI entity.

When programmers or users use an AI entity instrumentally, the commission of an offense by the AI entity is attributed to them. The internal element required in the specific offense already exists in their minds. The programmer had criminal intent when he ordered the commission of the arson, and the user had criminal intent when he ordered the commission of the assault, even though these offenses were actually committed through a robot, an AI entity. When an end-user makes instrumental usage of an innocent agent to commit a crime, the end-user is deemed the perpetrator.

This liability model does not attribute any mental capability, or any human mental capability, to the AI entity. According to this model, there is no legal difference between an AI entity and a screwdriver or an

78. See DRESSLER, supra note 54, at 126.
79. See Solum, supra note 69, at 1237.
80. The AI entity is used as an instrument and not as a participant, although it uses its features of processing information. See, e.g., George R. Cross & Cary G. Debbesonet, An Artificial Intelligence Application in the Law: CCLIPS, A Computer Program that Processes Legal Information, 1 HIGH TECH. L.J. 329 (1986).
animal. When a burglar uses a screwdriver in order to open up a window, he uses the screwdriver instrumentally, and the screwdriver is not criminally liable. The screwdriver’s “action” is, in fact, the burglar’s. This is the same legal situation when using an animal instrumentally. An assault committed by a dog by order of its master is, in fact, an assault committed by the master.

This kind of legal model might be suitable for two types of scenarios. The first scenario is using an AI entity to commit an offense without using its advanced capabilities. The second scenario is using a very old version of an AI entity, which lacks the modern advanced capabilities of the modern AI entities. In both scenarios, the use of the AI entity is instrumental usage. Still, it is usage of an AI entity, due to its ability to execute an order to commit an offense. A screwdriver cannot execute such an order; a dog can. A dog cannot execute complicated orders; an AI entity can.81

The perpetration-via-another liability model is not suitable when an AI entity decides to commit an offense based on its own accumulated experience or knowledge. This model is not suitable when the software of the AI entity was not designed to commit the specific offense, but was committed by the AI entity nonetheless. This model is also not suitable when the specific AI entity functions not as an innocent agent, but as a semi-innocent agent.82 However, the perpetration-via-another liability model might be suitable when a programmer or user makes instrumental usage of an AI entity, but without using the AI entity’s advanced capabilities. The legal result of applying this model is that the programmer and the user are criminally liable for the specific offense committed, while the AI entity has no criminal liability whatsoever.83

C. The Natural-Probable-Consequence Liability Model: Foreseeable Offenses Committed by Artificial Intelligence Entities

The second model of criminal liability assumes deep involvement of the programmers or users in the AI entity’s daily activities, but without any intention of committing any offense via the AI entity. For example, during the execution of its daily tasks, an AI entity commits an

offense. The programmers or users had no knowledge of the offense until it had already been committed; they did not plan to commit any offense, and they did not participate in any part of the commission of that specific offense.

One example of such a scenario is an AI robot, or software, which is designed to function as an automatic pilot. The AI entity is programmed to protect the mission as part of the mission of flying the plane. During the flight, the human pilot activates the automatic pilot (which is the AI entity), and the program is initialized. At some point after activation of the automatic pilot, the human pilot sees an approaching storm and tries to abort the mission and return to base. The AI entity deems the human pilot’s action as a threat to the mission and takes action in order to eliminate that threat. It might cut off the air supply to the pilot or activate the ejection seat, etc. As a result, the human pilot is killed by the AI entity’s actions.

Obviously, the programmer had not intended to kill anyone, especially not the human pilot, but nonetheless, the human pilot was killed as a result of the AI entity’s actions, and these actions were done according to the program. Another example is AI software designed to detect threats from the Internet and protect a computer system from these threats. A few days after the software is activated, it figures out that the best way to detect such threats is by entering websites it defines as dangerous and destroying any software recognized as a threat. When the software does that, it is committing a computer offense, although the programmer did not intend for the AI entity to do so.

In these examples, the first model is not legally suitable. The first model assumes mens rea, the criminal intent of the programmers or users to commit an offense via the instrumental use of some of the AI entity’s capabilities. This is not the legal situation in these cases. In these cases, the programmers or users had no knowledge of the committed offense; they had not planned it, and had not intended to commit the offense using the AI entity. For such cases, the second model might create a suitable legal response. This model is based upon the ability of the programmers or users to foresee the potential commission of offenses.

According to the second model, a person might be held accountable for an offense, if that offense is a natural and probable consequence of

84. *See supra* Part III.B.
85. *Id.*
86. *Id.*
that person’s conduct.87 Originally, the natural-probable-consequence liability model was used to impose criminal liability upon accomplices, when one committed an offense, which had not been planned by all of them and which was not part of a conspiracy.88 The established rule prescribed by courts and commentators is that accomplice liability extends to acts of a perpetrator that were a “natural and probable consequence”89 of a criminal scheme that the accomplice encouraged or aided.90 Natural-probable-consequence liability has been widely accepted in accomplice liability statutes and codifications.91

Natural-probable-consequence liability seems legally suitable for situations in which an AI entity committed an offense, while the programmer or user had no knowledge of it, had not intended it, and had not participated in it.92 The natural-probable-consequence liability model requires the programmer or user to be in a negligent mental state, not more.93 Programmers or users are not required to know about any forthcoming commission of an offense as a result of their activity, but are required to know that such an offense is a natural, probable consequence of their actions.94

A negligent person, in a criminal context, is a person who has no knowledge of the offense, but a reasonable person should have known about it since the specific offense is a natural probable consequence of that person’s conduct.95 The programmers or users of an AI entity, who should have known about the probability of the forthcoming commission of the specific offense, are criminally liable for the specific offense, even though they did not actually know about it.96 This is the fundamental

87 See supra Part III.C.
88 Id.
89 United States v. Powell, 929 F.2d 724 (D.C. Cir. 1991).
91 State v. Kaiser, 918 P.2d 629 (Kan. 1996); United States v. Andrews, 75 F.3d 552 (9th Cir. 1996).
92 Andrews, 75 F.3d at 552.
93 Id.
94 Id.
96 Kaiser, 260 Kan. at 245.
legal basis for criminal liability in negligence cases. 97 Negligence is, in fact, an omission of awareness or knowledge. 98 The negligent person omitted knowledge, not acts. 99

The natural-probable-consequence liability model would permit predicating liability upon negligence, even when the specific offense requires a different state of mind. 100 This is not valid in relation to the person who personally committed the offense, but rather, is considered valid in relation to the person who was not the actual perpetrator of the offense, but was one of its intellectual perpetrators. 101 Reasonable programmers or users should have foreseen the offense, and prevented it from being committed by the AI entity.

However, the legal results of applying the natural-probable-consequence liability model to the programmer or user differ in two different types of factual cases. The first type of case is when the programmers or users were negligent while programming or using the AI entity but had no criminal intent to commit any offense. The second type of case is when the programmers or users programmed or used the AI entity knowingly and willfully in order to commit one offense via the AI entity, but the AI entity deviated from the plan and committed some other offense, in addition to or instead of the planned offense.

The first type of case is one of pure negligence. 102 The programmers or users negligently acted or failed to act; therefore, there is no reason why they should not be held accountable for an offense of negligence, if there is such an offense in the specific legal system. Thus, as in the above example, where a programmer of an automatic pilot negligently programmed it to defend its mission with no restrictions on the taking of human life, the programmer is negligent and liable for the homicide of the human pilot. Consequently, if there is a specific offense of negligent homicide in that legal system, this is the most severe offense for which the programmer might be held accountable, not manslaughter or murder, which requires knowledge or intent. 103

97. DRESSLER, supra note 54, at 980-81; MODEL PENAL CODE § 2.02.
98. Id.
99. Id.
100. THE AMERICAN LAW INSTITUTE, MODEL PENAL CODE – OFFICIAL DRAFT AND EXPLANATORY NOTES 312 (1962, 1985); State v. Linscott, 520 A.2d 1067, 1070 (Me. 1987).
102. DRESSLER, supra note 54, at 980-81.
103. Id. at 230-31.
The second type of case resembles the basic idea of the natural-probable-consequence liability in accomplice liability cases. The dangerousness of the very association or conspiracy whose aim is to commit an offense is the legal reason for imposing more severe accountability upon the cohorts. For example, a programmer programs an AI entity to commit a violent robbery in a bank, but the programmer did not program the AI entity to kill anyone. During the execution of the robbery, the AI entity kills one of the people present at the bank who resisted the robbery. In such cases, the criminal negligence liability alone is insufficient. The danger posed by such a situation far exceeds negligence.

As a result, according to the natural-probable-consequence liability model, when the programmers or users programmed or used the AI entity knowingly and willfully in order to commit one offense via the AI entity, but the AI entity deviated from the plan and committed another offense, in addition to or instead of the planned offense, the programmers or users shall be held accountable for the offense itself, as if it had been committed knowingly and willfully. In the above example of the robbery, the programmer shall be held criminally accountable for the robbery (if committed), as well as for the killing, as an offense of manslaughter or murder, which requires knowledge and intent.

The question still remains: What is the criminal liability of the AI entity itself when the natural-probable-consequence liability model is applied? In fact, there are two possible outcomes. If the AI entity acted as an innocent agent, without knowing anything about the criminal prohibition, it is not held criminally accountable for the offense it committed. Under such circumstances, the actions of the AI entity were not different from the actions of the AI entity under the first model (the perpetration-via-another liability model). However, if the AI entity did not act merely as an innocent agent, then, in addition to the criminal liability of the programmer or user pursuant to the natural-

105. Id.
107. See supra Part III.B.
108. See subparagraph III.B.
probable-consequence liability model, the AI entity itself shall be held criminally liable for the specific offense directly. The direct liability model of AI entities is the third model, as described hereunder.

D. The Direct Liability Model: Artificial Intelligence Entities as being Tantamount to Human Offenders

The third model does not assume any dependence of the AI entity on a specific programmer or user. The third model focuses on the AI entity itself. As discussed above, criminal liability for a specific offense is mainly comprised of the external element (actus reus) and the internal element (mens rea) of that offense. Any person attributed with both elements of the specific offense is held criminally accountable for that specific offense. No other criteria are required in order to impose criminal liability. A person might possess further capabilities, but, in order to impose criminal liability, the existence of the external element and the internal element required to impose liability for the specific offense is quite enough.

In order to impose criminal liability on any kind of entity, the existence of these elements in the specific entity must be proven. When it has been proven that a person committed the offense in question with knowledge or intent, that person is held criminally liable for that offense. The relevant questions regarding the criminal liability of AI entities are: How can these entities fulfill the requirements of criminal liability? Do AI entities differ from humans in this context?

An AI algorithm might have many features and qualifications that exceed those of an average human, but such features or qualifications are not required in order to impose criminal liability. When a human or corporation fulfills the requirements of both the external element and the

111. See supra Part III.A.
112. DRESSLER, supra note 54, at 126.
113. Id.
114. Id.
115. Id.
116. Id.
117. DRESSLER, supra note 54, at 126.
internal element, criminal liability is imposed.118 If an AI entity is capable of fulfilling the requirements of both the external element and the internal element, and, in fact, it actually fulfills them, there is nothing to prevent criminal liability from being imposed on that AI entity.119

Generally, the fulfillment of the external element requirement of an offense is easily attributed to AI entities.120 As long as an AI entity controls a mechanical or other mechanism to move its moving parts, any act might be considered as performed by the AI entity.121 Thus, when an AI robot activates its electric or hydraulic arm and moves it, this might be considered an act, if the specific offense involves such an act. For example, in the specific offense of assault, such an electric or hydraulic movement of an AI robot that hits a person standing nearby is considered as fulfilling the \textit{actus reus} requirement of the offense of assault.122

When an offense might be committed due to an omission, it is even simpler. Under this scenario, the AI entity is not required to act at all.123 Its very inaction is the legal basis for criminal liability, as long as there had been a duty to act.124 If a duty to act is imposed upon the AI entity, and it fails to act, the \textit{actus reus} requirement of the specific offense is fulfilled by way of an omission.125

Attributing the internal element of offenses to AI entities is the real legal challenge in most cases. Attributing the mental element differs from one AI technology to the other.126 Most cognitive capabilities developed in modern AI technology are immaterial to the question of the imposition of criminal liability. Creativity is a human feature that some animals possess, but creativity is not a requirement for imposing criminal liability.127 Even the least creative persons are held criminally liable. The only mental requirements needed in order to impose criminal liability are knowledge, intent, negligence, etc., as required in the specific offense and under the general theory of criminal law.

118. Id.
119. Id.
120. Id. at 979-80.
121. Id.
122. Dressler, supra note 54, at 126.
123. Id.
124. Id.
125. Id.
126. Padhy, supra note 6, at 14.
127. Dressler, supra note 54, at 126.
Knowledge is defined as sensory reception of factual data and the understanding of that data. Most AI systems are well-equipped for such reception. Sensory receptors of sights, voices, physical contact, touch, etc., are common in most AI systems. These receptors transfer the factual data received to central processing units that analyze the data. The process of analysis in AI systems parallels that of human understanding. The human brain understands the data received by eyes, ears, hands, etc., by analyzing that data. Advanced AI algorithms are trying to imitate human cognitive processes.

Specific intent is the strongest of the internal element requirements. Specific intent is the existence of a purpose or an aim that a factual event will occur. The specific intent required to establish liability for murder is a purpose or an aim that a certain person will

128. WILLIAM JAMES, THE PRINCIPLES OF PSYCHOLOGY 221 (1890); HERMANN VON HELMHOLTZ, THE FACTS OF PERCEPTION (1878). In this context knowledge and awareness are identical. See, e.g., United States v. Youts, 229 F.3d 1312, 1317 (10th Cir. 2000); State v. Sargent, 594 A.2d 401 (Vt. 1991); United States v. Spinney, 65 F.3d 231, 235 (1st Cir. 1995); State v. Wyatt, 482 S.E.2d 147 (W. Va. 1996); United States v. Wert-Ruiz, 228 F.3d 250, 255 (3rd Cir. 2000); United States v. Jewell, 532 F.2d 697, 700-01 (9th Cir. 1976); United States v. Ladish Malting Co., 135 F.3d 484, 488 (7th Cir. 1998). The Model Penal Code even provides that: “A person acts knowingly with a respect to a material element of an offense when: (i) if..., he is aware that his conduct is of that nature or that such circumstances exist; and (ii) if..., he is aware that it is practically certain that his conduct will cause such a result.” MODEL PENAL CODE § 2.02(2)(b) (emphasis added).

129. PAdHY, supra note 6, at 10.

131. Id.

132. Boden, supra note 130, at 111; Partridge, supra note 130, at 118; Marr, supra note 130, at 101.

133. See supra Part II.

die. As a result of the existence of such intent, the perpetrator of the offense commits the offense; i.e., he performs the external element of the specific offense. This situation is not unique to humans. An AI entity might be programmed to have a purpose or an aim and to take actions in order to achieve that purpose. This is specific intent.

One might assert that humans have feelings that cannot be imitated by AI software, not even by the most advanced software. Such feelings are love, affection, hatred, and jealousy, among others. That might be correct in relation to the technology of the beginning of the twenty-first century. However, such feelings are rarely required in specific offenses. Most specific offenses are satisfied by knowledge of the existence of the external element. Few offenses require specific intent in addition to knowledge. Almost all other offenses are satisfied by much lower standards of culpability. In very few specific offenses that do require certain feelings (e.g., crimes of racism, hate), criminal liability cannot be imposed upon AI entities, which have no such feelings, but in any other specific offense, it is not a barrier.

If a person fulfills the requirements of both the external element and the internal element of a specific offense, then the person is held criminally liable. Why should an AI entity that fulfills all elements of an offense be exempt from criminal liability? One might argue that some segments of human society are exempt from criminal liability even if both the external and internal elements have been established. Such segments of society are infants and the mentally ill. A specific order

139. Id.
140. DRESSLER, supra note 54, at 126.
142. DRESSLER, supra note 54, at 126.
145. It is an affirmative defense to a prosecution under any Federal statute that, at the time of the commission of the acts constituting the offense, the defendant, as a result of a severe mental disease or defect, was unable to appreciate the nature and quality of the wrongfulness of his acts. Mental disease or defect does not otherwise constitute a defense.

139. Id.
140. DRESSLER, supra note 54, at 126.
142. DRESSLER, supra note 54, at 126.
145. It is an affirmative defense to a prosecution under any Federal statute that, at the time of the commission of the acts constituting the offense, the defendant, as a result of a severe mental disease or defect, was unable to appreciate the nature and quality of the wrongfulness of his acts. Mental disease or defect does not otherwise constitute a defense.
in criminal law exempts infants from criminal liability. The social rationale behind the infancy defense is to protect infants from the harmful consequences of the criminal process and to handle them in other social frameworks. Do such frameworks exist for AI entities? The original legal rationale behind the infancy defense was the fact that infants are incapable of comprehending what was wrong in their conduct (doli incapax). Later, children can be held criminally liable if the presumption of mental incapacity was refuted by proof that the child was able to distinguish between right and wrong. Could that be similarly applied to AI entities? Most AI algorithms are capable of analyzing permitted and forbidden.

The mentally ill are presumed to lack the fault element of the specific offense, due to their mental illness (doli incapax). The mentally ill are unable to distinguish between right and wrong (cognitive

Id.
145. See, e.g., MINN. STAT. §9913 (1927); MONT. REV. CODE §10729 (1935); N.Y. PENAL CODE §§15a (1935); OKLA. STAT. §152 (1937); UTAH REV. STAT. 103-4-10 (1933); State v. George, 54 A. 745 (Del. 1902); Heilman v. Commonwealth, 1 S.W. 731 (Ky. 1886); State v. Aaron, 4 N.J.L. 269, 276-77 (1818); McCormack v. State, 15 So. 438, 440 (Ala. 1894); Little v. State, 554 S.W.2d 312 (Ark. 1977); Clay v. State, 196 So. 462, 463 (Fla. 1940); In re Devon T., 584 A.2d 1287 (Md. Ct. App. 1991); State v. Dillon, 471 P.2d 553 (Idaho 1970); State v. Jackson, 142 S.W.2d 45, 50 (Mo. 1940).

capabilities) and to control impulsive behavior. When an AI algorithm functions properly, there is no reason for it not to use all of its capabilities to analyze the factual data received through its receptors. However, an interesting legal question would be whether a defense of insanity might be raised in relation to a malfunctioning AI algorithm, when its analytical capabilities become corrupted as a result of that malfunction.

When an AI entity establishes all elements of a specific offense, both external and internal, there is no reason to prevent imposition of criminal liability upon it for that offense. The criminal liability of an AI entity does not replace the criminal liability of the programmers or the users, if criminal liability is imposed on the programmers and/or users by any other legal path. Criminal liability is not to be divided, but rather, combined. The criminal liability of the AI entity is imposed in addition to the criminal liability of the human programmer or user.

However, the criminal liability of an AI entity is not dependent upon the criminal liability of the programmer or user of that AI entity. As a result, if the specific AI entity was programmed or used by another AI entity, the criminal liability of the programmed or used AI entity is not influenced by that fact. The programmed or used AI entity shall be held criminally accountable for the specific offense pursuant to the direct liability model, unless it was an innocent agent. In addition, the programmer or user of the AI entity shall be held criminally accountable for that very offense pursuant to one of the three liability models, according to its specific role in the offense. The chain of criminal liability might continue, if more parties are involved, whether human or AI entities.

There is no reason to eliminate the criminal liability of an AI entity or of a human, which is based on complicity between them. An AI

153. Padhy, supra note 6, at 10.

154. Dressler, supra note 24, at 126.

155. See supra Part III.A.

156. Id.

157. Id.

158. Id.
entity and a human might cooperate as joint perpetrators, as accessories and abettors, etc., and the relevant criminal liability might be imposed on them accordingly. Since the factual and mental capabilities of an AI entity are sufficient to impose criminal liability on it, if these capabilities satisfy the legal requirements of joint perpetrators, accessories, and abettors, etc., then the relevant criminal liability as joint perpetrators, accessories, and abettors, etc., should be imposed, regardless of whether the offender is an AI entity or a human.

Not only positive factual and mental elements might be attributed to AI entities. All relevant negative fault elements are attributable to AI entities.159 Most of these elements are expressed by the general defenses in criminal law (e.g., self-defense, necessity, duress, intoxication, etc.).160 For some of these defenses (justifications), 161 there is no material difference between humans and AI entities, since they relate to a specific situation (in rem), regardless of the identity of the offender. For example, an AI entity serving under the local police force is given an order to arrest a person illegally. If the order is not manifestly illegal, the executer of the order is not criminally liable.162 In that case, there is no difference whether the executer is human or an AI entity.

For other defenses (excuses and exemptions)163 some applications should be adjusted. For example, the intoxication defense is applied when the offender is under the physical influence of an intoxicating substance (e.g., alcohol, drugs).164 The influence of alcohol on an AI entity is minor, at most, but the influence of an electronic virus that is

160. Id.
infecting the operating system of the AI entity might be considered parallel to the influence of intoxicating substances on humans. Some other factors might be considered as being parallel to insanity, loss of control, etc.165

It might be summed up that the criminal liability of an AI entity according to the direct liability model is not different from the relevant criminal liability of a human. In some cases, some adjustments are necessary, but substantively, it is the very same criminal liability, which is based upon the same elements and examined in the same ways.

E. Coordination of the Three Liability Models

The three liability models described above are not alternative models. These models might be applied in combination in order to create a full image of criminal liability in the specific context of AI entity involvement. None of the three models is mutually exclusive. Thus, applying the second model is possible as a single model for the specific offense, and it is possible as one part of a combination of two of the legal models or of all three of them.

When the AI entity plays the role of an innocent agent in the perpetration of a specific offense, and the programmer is the only person who directed that perpetration, the application of the perpetration-via-another model (the first liability model) is the most appropriate legal model for that situation.166 In that same situation, when the programmer is itself an AI entity (when an AI entity programs another AI entity to commit a specific offense), the direct liability model (the third liability model) is most appropriately applied to the criminal liability of the programmer of the AI entity.167 The third liability model in that situation is applied in addition to the first liability model, and not in lieu thereof. Thus, in such situations, the AI entity programmer shall be criminally liable, pursuant to a combination of the perpetration-via-another liability model and the direct liability model.

If the AI entity plays the role of the physical perpetrator of the specific offense, but that very offense was not planned, then the application of the natural-probable-consequence liability model might be appropriate.168 The programmer might be deemed negligent if no offense had been perpetrated intentionally, or the programmer might be

166. See supra Part III.B.
167. See supra Part III.D.
168. See supra Part II.C.
held fully accountable for that specific offense if another offense had
indeed been deliberately planned, but the specific offense that was
perpetrated had not been part of the original criminal scheme.\footnote{169}
Nevertheless, when the programmer is not human, the direct liability
model must be applied in addition to the simultaneous application of the
natural-probable-consequence liability model; likewise, when the
physical perpetrator is human and the planner is an AI entity.

The coordination of all three liability models creates an opaque net
of criminal liability.\footnote{170} The combined and coordinated application of
these three models reveals a new legal situation in the specific context of
AI entities and criminal law.\footnote{171} As a result, when AI entities and
humans are involved, directly or indirectly, in the perpetration of a
specific offense, it will be far more difficult to evade criminal liability.
The social benefit derived from such a legal policy is of substantial
value. All entities, human, legal, or AI become subject to criminal
law.\footnote{172} If the clearest purpose of the imposition of criminal liability is
the application of legal social control in the specific society, then the
coordinated application of all three models is necessary in the very
context of AI entities.\footnote{173}

IV. GENERAL PUNISHMENT ADJUSTMENT CONSIDERATIONS

Let us assume an AI entity is criminally liable. Let us assume it is
indicted, tried, and convicted. After the conviction, the court is
supposed to sentence that AI entity. If the most appropriate punishment
under the specific circumstances is one year of incarceration, for
example, how can an AI entity practically serve such a sentence? How
can capital punishment, probation, or even a fine be imposed on an AI
entity? In instances where there is no body to arrest (especially in cases
of AI software that was not installed in a physical body, such as a robot),
what is the practical meaning of incarceration? Where no bank account
is available for the sentenced AI entity, what is the practical significance
of fining it? Similar legal problems have been raised when the criminal
liability of corporations was recognized.\footnote{174} Some asked how any of the

\footnote{169. Id.}
\footnote{170. See supra Parts II.B, II.C & II.D.}
\footnote{171. Id.}
\footnote{172. Id.}
\footnote{173. Id.}
legitimate penalties imposed upon humans could be applicable to corporations. The answer was simple and legally applicable. When a punishment can be imposed on a corporation as it is on humans, it is imposed without change. When the court adjudicates a fine, the corporation pays the fine in the same way that a human pays the fine and in the same way that a corporation pays its bills in a civil context. However, when punishment of a corporation cannot be carried out in the same manner as with humans, an adjustment is required. Such is the legal situation vis-à-vis AI entities.

The punishment adjustment considerations examine the theoretical foundations of any applied punishment. These considerations are applied in a similar manner and are comprised of three stages. Each stage may be explained by a question, as described below:

1. What is the fundamental significance of the specific punishment for a human?
2. How does that punishment affect AI entities?
3. What practical punishments may achieve the same significance when imposed on AI entities?

The most significant advantage of these punishment adjustment considerations is that the significance of the specific punishment remains identical when imposed on humans and AI entities. This method of punishment adjustment considerations is referred to below in some of the punishments used in modern societies: capital punishment, incarceration, suspended sentencing, community service, and fines.

Capital punishment is considered the most severe punishment for humans, and there is no consensus regarding its constitutionality among the various jurisdictions. Capital punishment is the most effective

175. Fisse & Braithwaite, supra note 21, at 468.
177. Id.
178. Coffee, supra note 20, at 424-34.
179. See, e.g., the abolition of capital penalty in Germany in 1949, Grundgesetz, Art. 102; in Britain for murder in 1965, Murder (Abolition of Death Penalty) Act, 1965, c.71; and the debate in the United States, In re Kemmler, 136 U.S. 436 (1890); Provenzano v. Moore, 744 So.2d 413 (Fla. 1999); Dutton v. State, 91 A. 417 (Md. 1914); Campbell v. Wood, 18 F.3d 662 (9th Cir. 1994); Wilkerson v. Utah, 99 U.S. 130 (1878); People v. Daugherty, 256 P.2d 911 (Cal. 1953); Gray v. Lucas, 710 F.2d 1048 (5th Cir. 1983); Hunt v. Nuth, 57 F.3d 1327 (4th Cir. 1995); Gregg v. Georgia, 428 U.S. 153 (1979).
method of incapacitating offenders as it relates to recidivism since once the death sentence is carried out, the offender is obviously incapable of committing any further offense. The significance of capital punishment for humans is the deprivation of life. 180 The “life” of an AI entity is its independent existence as an entity. Sometimes, it has a physical appearance (e.g., as a robot); sometimes it has only an abstract existence (e.g., as software installed on a computer system or on a network server).

Considering capital punishment’s efficacy in incapacitating offenders, the practical action that may achieve the same results as capital punishment when imposed on an AI entity is deletion of the AI software controlling the AI entity. Once the deletion sentence is carried out, the offending AI entity is incapable of committing any further offenses. The deletion eradicates the independent existence of the AI entity and is tantamount to the death penalty.

Incarceration is one of the most popular sentences imposed in Western legal systems for serious crimes. 181 The significance of incarceration for humans is the deprivation of human liberty and the imposition of severe limitations on human free behavior, freedom of movement, and freedom to manage one’s personal life. 182 The “liberty” or “freedom” of an AI entity includes the freedom to act as an AI entity

181. DRESSLER, supra note 54, at 30.

in the relevant area. For example, an AI entity in medical service has the freedom to participate in surgeries; an AI entity in a factory has the freedom to manufacture, etc.

Considering the nature of a sentence of incarceration, the practical action that may achieve the same effects as incarceration when imposed on an AI entity is to put the AI entity out of use for a determinate period. During that period, no action relating to the AI entity’s freedom is allowed, and thus its freedom or liberty is restricted.

Suspended sentencing is a very popular intermediate sanction in Western legal systems for increasing the deterrent effect on offenders in lieu of actual incarceration. The significance of a suspended sentence for humans is the very threat of incarceration if the human commits a specific offense or a type of specific offense. If the human commits such an offense, a sentence of incarceration will be imposed for the first offense in addition to the sentencing for the second offense. As a result, humans are deterred from committing another offense and from becoming a recidivist offender. Practically, a suspended sentence is imposed only in the legal records. No physical action is taken when a suspended sentence is imposed. As a result, when imposing a suspended sentence, there is no difference in effect between humans and AI entities. The statutory criminal records of the state do not differentiate between a suspended sentence imposed on humans, and those imposed on corporations or AI entities, as long as the relevant entity may be identified specifically and accurately.

Community service is also a very popular intermediate sanction in Western legal systems in lieu of actual incarceration. In most legal systems, community service is a substitute for short sentences of actual incarceration. In some legal systems, community service is imposed and coupled with probation so that the offender “pays a price” for the damages he caused by committing the specific offense.

186. Id.
significance of community service for humans is compulsory contribution of labor to the community. As discussed above, an AI entity can be engaged as a worker in very many areas. When an AI entity works in a factory, its work is done for the benefit of the factory owners or for the benefit of the other workers in order to ease and facilitate their professional tasks. In the same way that an AI entity works for the benefit of private individuals, it may work for the benefit of the community. When work for the benefit of the community is imposed on an AI entity as a compulsory contribution of labor to the community, it may be considered community service. Thus, the significance of community service is identical, whether imposed on humans or AI entities.

The adjudication of a fine is the most popular intermediate sanction in Western legal systems in lieu of actual incarceration. The significance of paying a fine for humans is deprivation of some of their property, whether the property is money (a fine) or other property (forfeiture). When a person fails to pay a fine, or has insufficient property to pay the fine, substitute penalties are imposed on the offender, particularly incarceration. The imposition of a fine on a corporation is identical to the imposition of a fine on a person, because both people and corporations have property and bank accounts, so the payment of a fine is identical, whether the paying entity is human or a corporate entity.

189. See paragraphs I, II.

190. Boucq, supra note 4.

191. Id.

192. See supra note 190.

193. See Feeley, Berk & Campbell supra note 188.

196. Fisse & Braithwaite, supra note 21, at 468.
However, most AI entities have no money, property, or bank accounts of their own. If an AI entity does have its own property or money, the imposition of a fine on it would be identical to the imposition of a fine on humans or corporations.197

For most humans and corporations, property is gained through labor.198 When paying a fine, the property, which is a result of labor, is transferred to the state.199 That labor might be transferred to the state in the form of property or directly as labor. As a result, a fine imposed on an AI entity might be collected as money or property and as labor for the benefit of the community.200 When the fine is collected in the form of labor for the benefit of the community, it is not different from community service as described above.201

Thus, most common punishments are applicable to AI entities.202 The imposition of specific penalties on AI entities does not negate the nature of these penalties in comparison with their imposition on humans. Of course, some general punishment adjustment considerations are necessary in order to apply these penalties, but still, the nature of these penalties remains the same relative to humans and to AI entities.

V. CONCLUSION

If all of its specific requirements are met, criminal liability may be imposed upon any entity—human, corporate, or AI entity.203 Modern times warrant modern legal measures in order to resolve today’s legal problems.

The rapid development of Artificial Intelligence technology requires current legal solutions in order to protect society from possible dangers inherent in technologies not subject to the law, especially criminal law.204 Criminal law has a very important social function, to preserve social order for the benefit and welfare of society.205 The threats upon that social order may be posed by humans, corporations, or AI entities.206 Traditionally, humans have been subject to criminal law,

197. O'Reilly, supra note 176.
198. JOHN LOCKE, TWO TREATISES OF GOVERNMENT 42 (1689).
199. See Subsection IV.
200. Id.
201. Id.
202. Id.
203. See supra Parts III, IV
204. See Weng, Chen & Sun, supra note 1, at 273.
205. Williams, supra note 16, at 2181.
206. See supra Parts III, IV.
except when otherwise decided by international consensus.207 Thus, minors and mentally ill persons are not subject to criminal law in most legal systems around the world. Although corporations in their modern form have existed since the fourteenth century,208 it took hundreds of years to subordinate corporations to the law, and especially, to criminal law.209 For hundreds of years, the law stated that corporations are not subject to criminal law, as inspired by Roman law (societas delinquere non potest).210

It was only in 1635 that an English court dared to impose criminal liability on a corporation.211 It was inevitable.212 Corporations participate fully in human life, and it was outrageous not to subject them to human laws, since offenses are committed by corporations or through them.213 But corporations have neither body nor soul.214 Legal solutions were developed so that in relation to criminal liability, they would be deemed capable of fulfilling all requirements of criminal liability, including external elements and internal elements.215 These solutions were embodied in models of criminal liability and general punishment adjustment considerations.216

It worked. In fact, it is still working, and very successfully. Why should AI entities be different from corporations? AI entities are taking larger and larger parts in human activities, as do corporations.217 Offenses have already been committed by AI entities or through them.218 AI entities have no soul, and some AI entities have neither body nor

208. WILLIAM SEARLE HOLDSWORTH, A HISTORY OF ENGLISH LAW 471-76 (1923).
212. Coffee, supra note 20, at 386.
213. O’Reilly, supra note 176.
214. Coffee, supra note 20, at 386.
215. Frederick Pollock, Has the Common Law Received the Fiction Theory of Corporations?, 27 L. Q. REV. 219 (1911).
216. O’Reilly, supra note 176; Coffee, supra note 20, at 424-34.
217. Weng, Chen & Sun, supra note 1, at 267; Boucq, supra note 5.
218. Weng, Chen & Sun, supra note 1, at 273.
Thus, there is no substantive legal difference between the idea of criminal liability imposed on corporations and on AI entities. It would be outrageous not to subordinate them to human laws, as corporations have been. Models of criminal liability exist as general paths to impose punishment. What else is needed?

219. Solum, supra note 69, at 1262.