Nonlinear polymer rheology:
Macroscopic phenomenology and molecular foundation
Shi-Qing Wang
Department of Polymer Science
University of Akron
http://www3.uakron.edu/rheology/
January 2017

PREFACE

INTRODUCTION

PART ONE LINEAR VISCOELASTICITY AND EXPERIMENTAL METHODS

1. Phenomenological description of linear viscoelasticity (LVE)
 1.1 Basic modes of deformation
 1.2 Linear responses
 1.3 Classical rubber elasticity theory

2. Molecular characterization in LVE regime
 2.1 Dilute limit
 2.2 Entangled state
 2.3 Molecular-level descriptions of entanglement dynamics
 2.4 Temperature dependence

3. Experimental Methods
 3.1 Shear rheometry
 3.2 Extensional rheometry
 3.3 Rheo-optical (in situ) methods
 3.4 Advanced rheometric methods

4. Characterization of deformation field
 4.1 Basic features in simple shear
 4.2 Yield stress in Bingham type (yield-stress) fluids
 4.3 Cases of homogeneous shear
 4.4 Particle tracking velocimetry (PTV)
 4.5 Single molecule imaging velocimetry (SMIV)
 4.6 Other methods

5. Improved rheometric apparatuses
 5.1 Linearly displaced co-cylinder for simple shear
 5.2 Cone-partitioned plate for rotational shear
 5.3 Other forms of large deformation
 5.4 Conclusion
PART TWO YIELDING – PRIMARY NONLINEAR RESPONSES TO ONGOING DEFORMATION

6. Wall slip – Interfacial yielding
6.1 Basic notion of wall slip in steady shear
6.2 Stick-slip transition in stress-controlled mode
6.3 Wall slip during startup shear - Interfacial yielding
6.4 Relationship between slip and bulk shear deformation
6.5 Molecular evidence of disentanglement during wall slip
6.6 Uncertainty in boundary condition
6.7 Conclusion

7. Yielding during startup deformation: from elastic deformation to flow
7.1 Yielding at Wi < 1 and steady shear thinning
7.2 Stress overshoot in fast startup shear
7.3 Nature of steady shear
7.4 From terminal flow to fast flow under creep: entanglement-disentanglement transition
7.5 Yielding in startup uniaxial extension
7.6 Conclusion

8. Strain hardening in extension
8.1 Conceptual pictures
8.2 Origin of "strain hardening" in uniaxial extension
8.3 True strain hardening: non-Gaussian stretching from finite extensibility
8.4 Different responses of entanglement to startup extension and shear
8.5 Conclusion
8.6 Conceptual and mathematical account of geometric condensation

9. Shear banding in startup and oscillatory shear: PTV observations
9.1 Shear banding after overshoot in startup shear
9.2 Overcoming wall slip during startup shear
9.3 Shear banding in LAOS

10. Strain localization in pressure-driven extrusion, squeezing, and planar extension
10.1 Capillary rheometry in rate-controlled mode
10.2 Instabilities at die entry
10.3 Squeezing deformation
10.4 Planar extension

11. Different modes of structural failure during uniaxial extension
11.1 Tensile-like failure at low rates
11.2 Shear yielding and necking-like strain localization
11.3 Rupture without crosslinking: where is disentanglement?
11.4 Strain localization vs. steady-flow: SER vs. FSR
11.5 Role of long chain branching
11.6 Analogy between capillary rheometry and filament stretching rheometry
PART THREE DECOHESION AND ELASTIC YIELDING AFTER LARGE DEFORMATION

12. Elastic yielding in stepwise simple shear
12.1 Strain softening after large step strain
12.2 PTV revelation of non-quiescent relaxation: localized elastic yielding
12.3 Quiescent and uniform elastic yielding
12.4 Arrested wall slip: elastic yielding at interfaces
12.5 Conclusion

13. Elastic breakup in stepwise uniaxial extension
13.1 Rupture-like failure during relaxation at low magnitude or low rates ($W_\text{R} < 1$)
13.2 Shear-yielding induced failure upon fast stepwise extension ($W_\text{R} > 1$)
13.3 Nature of the elastic breakup probed by infrared measurements
13.4 Primitive phenomenological explanations
13.5 Stepwise squeeze and planar extension

14. Finite cohesion and the role of chain architecture
14.1 Cohesive strength of an entanglement network
14.2 Enhancing cohesion barrier with long-chain branching to prevent structural breakup

PART FOUR EMERGING CONCEPTUAL FRAMEWORK AND BEYOND

15. Homogeneous entanglement
15.1 What is chain entanglement?
15.2 When, how and why disentanglement occurs
15.3 Criterion for homogeneous shear
15.4 Constitutive non-monotonicity
15.5 Metastable nature of shear banding

16. Molecular networks as the conceptual foundation
16.1 Introduction: the tube model and its predictions
16.2 Essential ingredients in formulation of a new molecular picture
16.3 Overcoming finite cohesion after step deformation: Quiescent or not
16.4 Forced yielding during startup deformation: stress overshoot
16.5 Interfacial yielding by disentanglement
16.6 Effect of long chain branching
16.7 Decohesion in startup creep: entanglement-disentanglement transition
16.8 Emerging microscopic theories of Sussman and Schweizer
16.9 Further tests to reveal the nature of polymer deformation
16.10 Conclusion

17. "Anomalous" phenomena
17.1 Essence of rheometric measurements: isothermal condition
17.2 Internal energy buildup and non-Gaussian extension
17.3 Breakdown of time-temperature superposition during transient response: shear and extension
17.4 Strain hardening in simple shear of certain polymer solutions
17.5 Lack of universal nonlinear responses: solutions vs. melts
17.6 Emergence of transient glassy responses

18. Difficulties with orthodox paradigms
18.1 Tube model does not predict key experimental features
18.2 Confusion about local and global deformation
18.3 Molecular network paradigm

19. Strain localization and the fluid mechanics of polymeric liquids
19.1 Relationship between wall slip and banding: a rheological-state diagram
19.2 Modeling of continuum fluid mechanics of entangled polymeric liquids
19.3 Challenges in polymer processing

20. Conclusions
20.1 Theoretical challenges
20.2 Experimental difficulties