Selected publications on nonlinear polymer rheology

Summaries 

  1. "Homogeneous shear, wall slip and shear banding of entangled polymeric liquids in simple-shear rheometry: a roadmap of nonlinear rheology", S. Q. Wang, S. Ravindranath and P. E. Boukany, Perspective Article, Macromolecules 44, 183 (2011).
  2. "The tip of iceberg in nonlinear polymer rheology: entangled liquids are 'solids'", S. Q. Wang, J. Polym. Sci. Polym. Phys. Ed. Viewpoint, 46, 2660 (2008).
  3. "A coherent description of nonlinear flow behavior of entangled polymers as related to processing and numerical simulations", S. Q. Wang, Feature Article, Macromol. Mater. Eng, 292, 15 (2007).
  4. "Molecular transitions and dynamics at melt/wall interfaces: origins of flow instabilities and wall slip", S.Q. Wang, Review Article, Adv. Polym. Sci. 138, 227 (1999).

Contrary to other work 

  1. Comment on "Nonmonotonic models are Not necessary to obtain shear banding phenomena in entangled polymer solutions", S. Q. Wang, Phys. Rev. Lett. 103, 219801 (2009) 

Theoretical development

  1. "New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network", S. Q. Wang, S. Ravindranath, Y. Y. Wang and P. Boukany, J. Chem. Phys. 127, 064903 (2007).
  2. "Yielding during startup deformation of entangled linear polymeric liquids", Y. Y. Wang and S. Q. Wang, J. Rheol. 53, 1389 (2009). 

Universal scaling behavior of yielding upon startup deformation 

  1. "Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions", S. Ravindranath and S. Q. Wang, J. Rheol. 52, 681 (2008).
  2. "Universal scaling behavior of shear stress overshoot in entangled melts", P. Boukany, and S. Q. Wang, J. Rheol. 53, 617 (2009). 

Stick-slip transition and wall slip

  1. "Experimental study of interfacial and constitutive phenomena in fast flow. 1. Interfacial instabilities of monodisperse polybutadiene", X. Yang, H. Ishida and S.Q. Wang, Rheol. Acta 37, 415 (1998).
  2. "Interfacial stick-slip transition in simple shear of entangled melts", P. E. Boukany, P. Tapadia and S. Q. Wang, J. Rheol. 50, 641 (2006).
  3. "Exploring origins of interfacial yielding in entangled linear melts during shear or after shear cessation", P. E. Boukany and S. Q. Wang, Macromolecules 42, 2222 (2009).
  4. "Molecular Imaging of slip in entangled DNA solution", P. E. Boukany, O. L. Hemminger, S. Q. Wang and L. J. Lee, Phys. Rev. Lett. 105, 027802 (2010).  

Extrusion of entangled liquids

  1. "Flow pattern and individual visualization of DNA solutions with different level of entanglement through a 4:1 planar micro-contraction", O. L. Hemminger, P. E. Boukany, S. Q. Wang and L. J. Lee, J. Non-Newt. Fluid Mech. 165, 1613 (2010). 

Startup continuous shear

  1. "Yield like constitutive transition in shear flow of entangled polymeric fluids", P. Tapadia and S.Q. Wang, Phys. Rev. Lett. 91, 198301 (2003).
  2. "Nonlinear flow behavior of entangled polymer solutions: yield like entanglement-disentanglement transition", P. Tapadia and S. Q. Wang, Macromolecules 37, 9083 (2004).
  3. "Direct visualization of continuous simple shear in non-Newtonian polymeric fluids", P. Tapadia and S. Q. Wang, Phys. Rev. Lett. 96, 016001 (2006).
  4. "A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions ", P. Boukany and S. Q. Wang, J. Rheol. 51, 217 (2007).
  5. "Steady state measurements in stress plateau region of entangled polymer solutions: entanglement-disentanglement transition and beyond", S. Ravindranath and S. Q. Wang, J. Rheol. 52, 957 (2008).
  6. "Banding in simple steady shear of entangled polymer solutions", S. Ravindranath and S. Q. Wang, Macromolecules 41, 2663 (2008).
  7. "Shear banding and wall slip in entangled DNA solutions", P. Boukany, T.Y. Hu and S. Q. Wang, Macromolecules 41, 2644 (2008).
  8. "Particle-tracking velocimetric and flow birefringence studies of nonlinear flow behavior of wormlike entangled micellar solutions", P. Boukany and S. Q. Wang, Macromolecules 41, 1455 (2008).
  9. "Shear banding or not in entangled DNA solutions depending on the level of entanglement", P. E. Boukany and S. Q. Wang, J. Rheol. 53, 73 (2009).
  10. "Exploring the transition from wall slip to bulk shearing banding in well-entangled DNA solutions", P. E. Boukany and S. Q. Wang, Soft Matter 5, 780 (2009).
  11. "Nature of steady flow in entangled fluids revealed by superimposed small amplitude oscillatory shear", P. E. Boukany and S. Q. Wang, J. Rheol. 53, 1425 (2009).
  12. "Nonlinear rheological behavior of poly(dimethyl siloxane) melt: an example of homogeneous shear", X. Li and S. Q. Wang, Rheol. Acta 49, 89 (2010).
  13. "Sear banding or not in entangled DNA solutions", P. E. Boukany and S. Q. Wang, Macromolecules 43, 6950 (2010).
  14. "Studying steady shear flow characteristics of entangled polymer solutions with parallel mechanical superposition", X. Li and S. Q. Wang, Macromolecules 43, 5904 (2010).

Step shear and step extension 

  1. "Non-quiescent relaxation in entangled polymeric liquids after step strain", S. Q. Wang, S. Ravindranath, P. Boukany, M. Olechnowicz, R. P. Quirk, A. Halasa, J. Mays, Phys. Rev. Lett. 97, 187801 (2006).
  2. "What are the origins of stress relaxation behaviors in step shear entangled polymer solutions", S. Ravindranath and S. Q. Wang, Macromolecules 40, 8031 (2007).
  3. "Elastic breakup in uniaxial extension of entangled polymer melts", Y. Wang, S. Q. Wang, P. Boukany and X. Wang, Phys. Rev. Lett. 99, 237801 (2007).
  4. "Step shear of entangled linear polymer melts: New experimental evidence for elastic yielding", P. E. Boukany and S. Q. Wang, Macromolecules 42, 6261 (2009).
  5. "Elastic yielding after step shear and during LAOS in absence of edge failure", X. Li and S. Q. Wang, Rheol. Acta. 49, 985 (2010).
  6. 6. "How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures", S. Ravindranath, S. Q. Wang, M. Olechnowicz, V.S. Chavan, and R. P. Quirk, Rheol. Acta., in press (2010). 

Large amplitude oscillatory shear 

  1. "Banding in shear oscillation of entangled fluids", P. Tapadia, S. Ravindranath and S. Q. Wang, Phys. Rev. Lett. 96, 196001 (2006).
  2. "Particle-tracking velocimetric investigation of large amplitude oscillatory shear behavior of entangled polymer solutions", S. Ravindranath and S. Q. Wang, J. Rheol. 52, 341 (2008).
  3. "Exploring origins of nonlinearity in large amplitude oscillatory shear (LAOS) of different viscoelastic materials", X. Li, S. Q. Wang and X. Wang, J. Rheol. 57, 1255 (2009).

Startup continuous uniaxial extension 

  1. Ductile failure due to yielding
    1. "Elastic breakup in uniaxial extension of entangled polymer melts", Y. Wang, S. Q. Wang, P. Boukany and X. Wang, Phys. Rev. Lett. 99, 237801 (2007).
    2. "From elastic extension to elongational flow of entangled melts", Y. Y. Wang and S. Q. Wang, J. Rheol. 52, 1275 (2008).
    3.  "Basic characteristics of uniaxial extension of entangled polymer melts with bimodal molecular weight distribution", Y. Y. Wang, S. W. Cheng and S. Q. Wang, J. Rheol., submitted (2010).
  2. Rupture due to chain scission (beyond the finite chain extensibility) 
    1. "On brittle failure in glass-like zone of uniaxial extension in entangled melts", Y. Y. Wang and S. Q. Wang, Rheol. Acta 49, 1179 (2010).
    2. "Basic characteristics of uniaxial extension rheology: Comparing monodisperse and bidisperse polymer melts", Y. Y. Wang, S. W. Cheng and S. Q. Wang, J. Rheol., submitted (2010).