Dr. Jordan Renna

Dr. Jordan Renna

Title: Associate Professor / Interim Chair
Dept/Program: Biology
Office: ASEC C307
Phone: 330-972-6933
Fax: 330-972-8445
Email: jrenna@uakron.edu
Website: https://rennalab.uakron.edu/


My research explores the mechanism of neural circuit development.

In the spinal cord and cortex, neural circuits require activity-dependent mechanisms for normal maturation. This is also true in the early visual system.  Waves of excitation sweep across the inner retina early in development and drive the formation of normal lamination and topography in visual centers of the brain.  Disruption of these retinal waves results in miswired circuits and off-target brain projections.

Many clinical conditions, such as amblyopia and stereoblindness, can result when the eyes do not properly wire into the brain during development.  This makes the retina an ideal system for investigating activity-dependent mechanisms driving neural circuit development as well as for exploring clinical implications of the disruption of these mechanisms. 

Many key details about the mechanism responsible for the propagation of retinal waves remain unknown. I will continue to use cutting-edge electrophysiological, molecular, and morphological techniques to bring a new depth of inquiry to these central issues in the field of circuit maturation.

My work lays a foundation that should ultimately help clinicians devise better strategies for repairing or regenerating neural circuits damaged due to injury or developmental disorders.


Tarchick MJ., Beigh C., Bonezzi PJ., Peachey NS., Renna JM. Photoreceptor deficits appear at eye opening in Rs1 mutant mouse models of X-linked retinoschisis. Experimental Eye Research 2024 Mar 19:242:109872. doi: 10.1016/j.exer.2024.109872.

Renna JM., Sondereker KB., Cors CL., Chaszeyka SN., Keenan KN., Corigliano MR., Milgrom LA., Onyak JR., Hamad EJ., Stabio ME. From 2D Slices to a 3D Model:  Training Students in Digital Microanatomy Analysis.  Anatomical Sciences Education.  2024 Apr-May;17(3):499-505. doi: 10.1002/ase.2396. *** Featured on the Cover of the April/May 2024 issue.

Bonezzi PJ., Tarchick MJ., Moore BD., Renna JM. Light drives the developmental progression of outer retinal function. Journal of General Physiology 2023 Sep 4;155(9):e202213262. doi: 10.1085/jgp.202213262.

Tarchick MJ., Clute DA., Renna JM. Modeling cholinergic retinal waves: starburst amacrine cells shape wave generation, propagation, and direction bias. Sci Rep 2023 Feb 17;13(1):2834. doi: 10.1038/s41598-023-29572-2.

Onyak JR., Vergara NM., Renna JMRetinal Organoid Light Responsivity: Current status and future opportunitiesTranslational Research 2022 Jun 9; S1931-5244(22)00133-5. doi: 10.1016/j.trsl.2022.06.001.

Bonezzi PJ., Tarchick MJ., Renna JM. Ex vivo electroretinograms made easy: performing ERGs using 3D printed components. Journal of Physiology 2020 Sep 4; doi: 10.1113/JP280014.

Sondereker KB., Stabio ME., Renna JMCrosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision.  J. Comparative Neurology 2020 January 31. DOI: 10.1002/cne.24873.

Cleymaet AM., Gallagher SK., Tooker RE., Lipin MY., Renna JM., Sodhi P., Berg D., Hartwick ATE., Berson DM., Vigh J.  (2019) μ-Opioid Receptor Activation Directly Modulates Intrinsically Photosensitive Retinal Ganglion Cells.  2019 April 11 Neuroscience.

Sondereker KB., Stabio ME., Jamil JR., Tarchick M., Renna JM. (2018) Where You Cut Matters: A Dissection and Analysis Guide for the Spatial Orientation of the Mouse Retina from Ocular Landmarks.  J.Vis.Exp. 2018 Aug 4; (138), E57861. 

Tufford AR., Onyak JR., Sondereker KB., Mattar P., Hattar S., Schmidt T., Renna JM., Cayouette M. (2018) Light-evoked activity in melanopsin ipRGCs instructs cone photoreceptor lamination during retinal development.  Cell Reports. 2018 May 22; 23(8): 2416-2428.

Stabio ME., Sondereker KB., Haghou S., Day BL., Chidsey B., Sabbah S., Renna JM. (2018) A novel map of the mouse eye for orienting retinal topography in anatomical space. The Journal of Comparative Neurology. 2018 Apr 6; 526(11):1749-1759.

Bonezzi PJ., Stabio ME., Renna JM., (2018) The development of medium wavelength photoresponsivity in the postnatal mouse retina. Current Eye Research. 2018 Feb 15: 1-8.

Stabio ME., Sabbah SX., Quattrochi L., Ilardi MC., Fogerson PM., Leyrer M., Kim MT., Kim I., Schiel M., Renna JM., Briggman KL., Berson DM., (2018) The M5 Cell: A Color-opponent Intrinsically Photosensitive Ganglion Cell.  Neuron2018 Jan 3; 97(1):150-163.e4. Epub 2017 Dec 14.

Weng SJ., Renna JM., Chen WY., Yang XL., (2018) Functional assessment of melanopsin-driven light responses in the mouse: Multielectrode array recordings.  Methods in Molecular Biology. 2018; 1753:289-303.

Sondereker KB., Onyak JR., Ross CL., Islam SW., Renna JM. (2017) Melanopsin ganglion cell outer retinal dendrites: Morphologically distinct and asymmetrically distributed. The Journal of Comparative Neurology, 2017 Dec 1; 525(17):3653-3665. Epub 2017 Aug 12.

Chew KS.*, Renna JM.*, McNeill DS., Fernandez DC., Keenan WT., Thomsen MB, Ecker JL., Loevinsohn GS., VanDunk C., Vicarel DC., Tufford A., Weng S., Gray PA., Cayouette M., Herzog ED., Zhao H., Berson DM., Hattar S. (2017) A subset of ipRGCs regulates both maturation of the circadian clock and segregation of the retinogeniculate projections in mice. eLIFE, 2017 June 15; (6). *co-first authorship

Renna JM., Stukel JM., Kuntz Willits R., Engeberg ED. (2017) Dorsal root ganglia neurite outgrowth measured as a function of changes in microelectrode array resistance. PLoS ONE, 2017 April; 12(4).

Renna JM.,Chellappa DK., Ross CL., Stabio ME., Berson DM. (2015) Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal developmentDevelopmental Neurobiology, 2015 September; 75(9): 935-46.

Renna JM., Weng S., Berson DM. (2011) Light acts through melanopsin to alter retinal wavesand segregation of retinogeniculate afferents. Nature Neuroscience, 2011 Jul 14; 827-829.

Ecker JL., Dumitrescu ON., Wong KY., Alam N., Chen SK., LeGates T., Renna JM., Prusky G., Berson DM., Hattar S. (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron, 2010 Jul 15; 67(1):49-60.

Strang CE., Renna JM., Amthor FR., Keyser KT. (2010) Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties. Investigative Ophthalmology and Visual Science, 2010 May; 51(5):2778-2789.

Renna JM., Strang CE., Amthor FR., Keyser KT. (2007) Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells. Visual Neuroscience, 2007 Jul-Aug;24(4):503-11.

Strang CE., Renna JM., Amthor FR., Keyser KT. (2007) Nicotinic acetylcholine receptor expression by directionally selective ganglion cells. Visual Neuroscience, 2007 Jul-Aug;24(4):523-33.


  • Postdoc – Department of Neuroscience, Brown University (2008-13)
  • Ph. D. - Vision Science, University of Alabama at Birmingham (2002-08)
  • BS - Neurobiology, Physiology and Behavior, University of California, Davis (1998-2001) and California State University, Fresno (1996-98)